Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 2 Toán 12 năm học 2018 - 2019 sở GDĐT Đồng Tháp

Sáng thứ Ba ngày 02 tháng 04 năm 2019, sở Giáo dục và Đào tạo tỉnh Đồng Tháp đã tổ chức kỳ thi kiểm tra học kỳ 2 môn Toán 12 năm học 2018 – 2019, nhằm tổng kết lại toàn bộ các kiến thức Toán 12 học sinh đã học trong giai đoạn HK2 vừa qua của năm học 2018 – 2019, để làm cơ sở cho việc đánh giá xếp loại học lực môn Toán 12. Đề thi học kỳ 2 Toán 12 năm học 2018 – 2019 sở GD&ĐT Đồng Tháp có mã đề 169 gồm 06 trang, đề được biên soạn theo dạng trắc nghiệm hoàn toàn với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, các kiến thức học sinh cần ôn tập để hoàn thành tốt đề thi này bao gồm: nguyên hàm, tích phân và ứng dụng (Giải tích 12 chương 3), số phức (Giải tích 12 chương 4), phương pháp tọa độ trong không gian (Hình học 12 chương 3), đề thi có đáp án mã đề 126, 145, 169, 197. [ads] Trích dẫn đề thi học kỳ 2 Toán 12 năm học 2018 – 2019 sở GD&ĐT Đồng Tháp : + Gọi M là điểm biểu diễn cho số phức z1 = a + (a^2 – 2a + 2)i (với a là số thực thay đổi) và N là điểm biểu diễn cho số phức z2 biết |z2 – 2 – i| = lz2 – 6 + i|. Tìm độ dài ngắn nhất của đoạn MN. + Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P): x + y – 2z + 4 = 0 và đường thẳng d: x = 3 + t, y = 1 + t, z = -1 + t (t thuộc R). Tìm khẳng định đúng. A. d và (P) cắt nhau nhưng không vuông góc với nhau. B. d nằm trong (P). C. d và (P) song song nhau. D. d và (P) vuông góc với nhau. + Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;-2;3), B(3;2;-1), C(0;2;1) và mặt phẳng (P): x + y – 2z – 6 = 0. Gọi M(a;b;c) là điểm thuộc (P) sao cho biểu thức vectơ |MA + MB + 2MC| đạt giá trị nhỏ nhất. Tính S = a + b + c.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường Quốc tế Á Châu - TP HCM
Nhằm giúp các em học sinh lớp 12 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 12 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường Quốc tế Á Châu, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường Quốc tế Á Châu – TP HCM : + Tìm phần thực và phần ảo của số phức z. A. Phần thực bằng 2019, phần ảo bằng 2020. B. Phần thực bằng −2019, phần ảo bằng −2020i. C. Phần thực bằng 2019, phần ảo bằng 2020i. D. Phần thực bằng −2019, phần ảo bằng −2020. + Trong không gian Oxyz, cho vật thể được giới hạn bởi hai mặt phẳng (P), (Q) vuông góc với trục Ox lần lượt tại x = a, x = b. Một mặt phẳng tùy ý vuông góc với Ox tại điểm có hoành độ x cắt vật thể theo thiết diện có diện tích là S(x) với y = S(x) là hàm số liên tục trên [a;b]. Thể tích V của thể tích đó được tính theo công thức? + Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) và mặt cầu (S). Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn. Đường tròn giao tuyến này có bán kính r bằng?
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Đông Dương - TP HCM
Nhằm giúp các em học sinh lớp 12 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 12 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Đông Dương, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Đông Dương – TP HCM : + Một em học sinh 15 tuổi được hưởng số tiền thừa kế là 300 000 000 đồng. Số tiền này được gửi tại một ngân hàng với kỳ hạn thanh toán 1 năm và học sinh này chỉ nhận được số tiền (cả gốc và lãi) khi đủ 18 tuổi. Biết rằng khi đủ 18 tuổi em này nhận được số tiền là 368 544 273 đồng. Vậy lãi suất của ngân hàng gần nhất với số nào sau đây? (Với giả thiết lãi suất không đổi trong suốt quá trình gửi). + Khi cắt một hình trụ bởi hai mặt phẳng cùng song song với trục. Với mặt phẳng thứ nhất cách trục một khoảng bằng a, thiết diện thu được là một hình vuông. Còn mặt phẳng thứ hai cách trục một khoảng bằng a thiết diện thu được là một hình chữ nhật có diện tích bằng. Thể tích của khối trụ được giới hạn bởi hình trụ đã cho bằng? + Cho tứ diện ABCD, trên các cạnh BC, BD, AC lần lượt lấy các điểm M, N, P sao cho. Mặt phẳng (MNP) chia khối tứ diện ABCD thành hai phần có thể tích là V1, V2 (tham khảo hình vẽ). Tỉ số V1/V2 bằng?
Đề thi học kỳ 2 Toán 12 năm 2019 - 2020 trường THPT chuyên Quốc học Huế
Ngày … tháng 06 năm 2020, trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế tổ chức kỳ thi kiểm tra chất lượng học kỳ 2 (HK2) môn Toán lớp 12 năm học 2019 – 2020. Đề thi học kỳ 2 Toán 12 năm 2019 – 2020 trường THPT chuyên Quốc học Huế gồm 04 trang với 32 câu trắc nghiệm và 02 câu tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 2 Toán 12 năm 2019 – 2020 trường THPT chuyên Quốc học Huế : + Trong không gian với hệ tọa độ Oxyz, cho tam giác OBC đều cạnh a và nằm trong mặt phẳng (Oxy), với B ∈ Ox . Dựng OO1, BB1, CC1 cùng vuông góc với mặt phẳng (OBC) sao cho OO1 = 2a, BB1 = a và diện tích tam giác O1B1C1 đạt giá trị nhỏ nhất. Giả sử giá trị nhỏ nhất đó là ma2. Khi đó, giá trị của m thuộc khoảng nào sau đây, biết tọa độ các điểm O1, B1, C1 đều không âm? [ads] + Mệnh đề nào sau đây đúng? A. Cho số phức z bất kì, khi đó số phức z – z là số thực. B. Số 0 vừa là số thực vừa là số thuần ảo. C. Cho số phức z bất kì, khi đó z^2 = |z|^2. D. Cho số phức z bất kì, khi đó số phức z + z là số thuần ảo. + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆: (x – 1)/1 = (y – 1)/2 = (z + 1)/-1 và mặt cầu (S): x^2 + y^2 + z^2 – 2x + 4y – 2z – 3 = 0. Viết phương trình mặt phẳng (α) chứa đường thẳng ∆ và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính lớn nhất.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Thanh Đa - TP HCM
Nhằm giúp các em học sinh lớp 12 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 12 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Thanh Đa, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Thanh Đa – TP HCM : + Cho hàm số y = f(x) liên tục trên [a; b]. Thể tích vật thể tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi đồ thị (C) : y = f(x), trục Ox, hai đường thẳng x = a, x = b quanh trục Ox là? + Trong không gian Oxyz, cho ba điểm A(1; −1; 2), B(2; 3; −1), C(−2; 3; 3). Biết M(a; b; c) là đỉnh thứ tư của hình bình hành ABCM, giá trị của biểu thức a + b − c bằng? + Cho F(x) là một nguyên hàm của hàm số f(x) = 1 − 4 sin 2x và F(0) = 10. Tìm F(x).