Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2022 - 2023 trường THCS Đặng Tấn Tài - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 trường THCS Đặng Tấn Tài, thành phố Thủ Đức, thành phố Hồ Chí Minh. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 trường THCS Đặng Tấn Tài – TP HCM : + Theo âm lịch, một chu kì quay của Mặt Trăng quanh Trái Đất là khoảng 29,53 ngày nên một năm âm lịch chỉ có khoảng 354 ngày (làm tròn). Do vậy, cứ sau một vài năm âm lịch thì người ta phải bổ sung một tháng (tháng nhuận) để đảm bảo năm âm lịch tương đối phù hợp với chu kì của thời tiết. Cách tính năm nhuận âm lịch như sau: Lấy số năm chia cho 19, nếu số dư là một trong các số: 0; 3; 6; 9; 11; 14; 17 thì năm âm lịch đó có tháng nhuận. Ví dụ: Năm 2017 là năm âm lịch có tháng nhuận vì 2017 chia 19 dư 3. Năm 2015 không phải năm nhuận âm lịch vì 2015 chia cho 19 dư 1.a) Hãy sử dụng quy tắc trên để xác định năm 1995 và năm 2030 có phải năm nhuận âm lịch hay không? b) Năm nhuận dương lịch là năm chia hết cho 4. Ngoài ra, những năm chia hết cho 100 chỉ được coi là năm nhuận dương lịch nếu chúng cũng chia hết cho 400 (ví dụ 1600 là năm nhuận dương lịch nhưng 1700 không là năm nhuận dương lịch). Hỏi trong các năm từ 1895 đến 1930, năm nào vừa là năm nhuận âm lịch, vừa là năm nhuận dương lịch. + Càng lên cao không khí càng loãng nên áp suất khí quyển càng giảm. Với những độ cao không lớn lắm thì ta có công thức áp suất khí quyển tương ứng với độ cao so với mực nước biển là một hàm số bậc nhất p = a.h + b, trong đó h(m) là độ cao so với mực nước biển, p(mmHg) là áp suất ứng với độ cao h. Biết rằng, tại mặt nước biển thì áp suất là 760mmHg và cứ lên cao 100m thì áp suất giảm 8mmHg. a) Xác định hệ số a và b. b) Thành phố Đà Lạt cao 1500m so với mực nước biển thì áp suất khí quyển tại Đà Lạt là bao nhiêu? + Lớp 9A dự định tổ chức liên hoan lớp cuối năm, trong phần nước uống cần chuẩn bị 42 ly trà sữa truyền thống. Để tiết kiệm chi phí lớp 9A đã tìm hiểu giá của hai cửa hàng A và B như sau: cửa hàng A, mua năm ly đồ uống bất kì thì sẽ được tặng một ly (cùng loại) và nếu hóa đơn trên 400000 đồng thì được giảm thêm 10% trên hóa đơn. Cửa hàng B chỉ khuyến mãi khi đặt hàng qua app GF thì sẽ được giảm 10% mỗi ly khi mua 3 ly trở lên và nếu mua từ 10 ly trở lên thì giảm 25% mỗi ly so với giá niêm yết và phí giao hàng thì khách hàng trả theo khoảng cách từ cửa hàng đến nơi nhận hàng. Hỏi Lớp 9A nên mua ở cửa hàng nào sẽ tiết kiệm hơn và tiết kiệm hơn được bao nhiêu tiền? Biết giá niêm yết một ly trà sữa truyền thống ở cả hai cửa hàng là như nhau và đều là 30000 đồng, khoảng cách từ địa điểm liên hoan đến cửa hàng B là 2,3km. Phí giao hàng được tính theo bảng sau: Khoảng cách Giá tiền (đồng) Dưới 10 km 25000 Từ 10km đến 20km 27500 Từ 20km đến 40km 30000 Trên 40km 5% giá trị đơn hàng.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Nam Định
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Nam Định Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020-2021 của sở GD ĐT Nam Định Đề tuyển sinh THPT môn Toán năm 2020-2021 của sở GD ĐT Nam Định Vào ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 của sở GD&ĐT Nam Định bao gồm 02 trang với 08 câu trắc nghiệm và 05 câu tự luận. Thời gian làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Một trong số câu hỏi từ đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 của sở GD&ĐT Nam Định được trích dẫn như sau: Cho tam giác nhọn ABC nội tiếp đường tròn (O;R). Hai đường cao BD, CE của tam giác ABC cắt nhau tại H. Các tia BD, CE cắt đường tròn (O;R) lần lượt tại điểm thứ hai là P, Q. Hỏi tứ giác BCDE có nội tiếp hay không? Cho đường tròn (O;5cm) và đường tròn (O';7cm), biết khoảng cách giữa hai tâm đường tròn là 2cm. Hỏi hai đường tròn đó có vị trí tương đối như thế nào? Tính diện tích xung quanh hình trụ có bán kính đáy 5 cm, chiều cao 2 cm. Câu hỏi này đề cao khả năng tư duy logic và khả năng giải quyết vấn đề của học sinh, đồng thời giúp họ nắm vững kiến thức cơ bản và phát triển khả năng giải toán một cách linh hoạt và sáng tạo.
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Đồng Nai
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Đồng Nai Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD ĐT Đồng Nai Đề tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD ĐT Đồng Nai Vào ngày … tháng 07 năm 2020, Sở Giáo dục và Đào tạo tỉnh Đồng Nai đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 - 2021. Đề tuyển sinh bao gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài là 120 phút. Đề thi cung cấp đáp án và lời giải chi tiết cho học sinh tham khảo. Trích đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021: Một hình cầu có thể tích bằng 288π (cm3). Hỏi diện tích mặt cầu là bao nhiêu? Được giao xếp 270 quyển sách vào tủ thư viện trong thời gian nhất định. Nhóm ban đầu được bổ sung học sinh, làm việc nhanh hơn dự định và vượt kế hoạch. Tính số quyển sách mỗi giờ nhóm dự định xếp. Cho tam giác nhọn ABC nội tiếp đường tròn (O), hai đường cao BE, CF cắt nhau tại trực tâm H. Chứng minh các mệnh đề liên quan đến tứ giác EHKP, trung điểm M của BC và điểm giao điểm T của đường tròn (O) với đường tròn ngoại tiếp tam giác EFK. Đề tuyển sinh này giúp học sinh thử sức và chuẩn bị tốt cho kỳ thi vào lớp 10. Nội dung bài toán phong phú, đa dạng, đòi hỏi học sinh phải có kiến thức vững và khả năng suy luận logic tốt để giải quyết các vấn đề.
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Quảng Ngãi
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Quảng Ngãi Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020-2021 Sở GD&ĐT Quảng Ngãi Đề tuyển sinh THPT môn Toán năm 2020-2021 Sở GD&ĐT Quảng Ngãi Ngày 17 tháng 07 năm 2020, Sở Giáo dục và Đào tạo tỉnh Quảng Ngãi đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020-2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020-2021 của Sở GD&ĐT Quảng Ngãi bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút, đề thi cung cấp đáp án và lời giải chi tiết. Trích đề tuyển sinh lớp 10 THPT môn Toán năm 2020-2021 Sở GD&ĐT Quảng Ngãi: - Bài toán 1: Bạn An muốn mua một cái cặp và một đôi giày, giá niêm yết tổng cộng là 850.000 đồng. Sau khi được giảm giá, An chỉ mất 785.000 đồng để mua cả hai vật dụng. Yêu cầu tính giá niêm yết của từng vật dụng. - Bài toán 2: Cho nửa đường tròn đường tâm O, đường kính AB và một điểm M bất kì trên nửa đường tròn đó. Xác định vị trí các điểm trên đường tròn để chứng minh các tính chất của các hình học được đề ra. - Bài toán 3: Xác định tham số a trong hàm số y = ax^2 sao cho đồ thị của hàm số đi qua điểm M(2;8) và vẽ đồ thị ứng với giá trị a. Đề tuyển sinh môn Toán năm 2020-2021 của Sở GD&ĐT Quảng Ngãi không chỉ giúp học sinh ôn tập kiến thức mà còn phát triển kỹ năng giải quyết bài toán và tư duy logic. Đây là cơ hội để học sinh thể hiện khả năng và chuẩn bị cho một năm học mới thành công.
Đề tham khảo Toán tuyển sinh năm 2021 2022 sở GD ĐT Thái Nguyên
Nội dung Đề tham khảo Toán tuyển sinh năm 2021 2022 sở GD ĐT Thái Nguyên Bản PDF - Nội dung bài viết Đề tham khảo Toán tuyển sinh năm 2021-2022 sở GD&ĐT Thái Nguyên Đề tham khảo Toán tuyển sinh năm 2021-2022 sở GD&ĐT Thái Nguyên Xin chào quý thầy cô và các bạn học sinh lớp 10! Hôm nay chúng ta sẽ cùng tìm hiểu và giải các bài toán trong đề tham khảo Toán tuyển sinh lớp 10 năm 2021-2022 của sở GD&ĐT Thái Nguyên. 1. Bài toán về chất lỏng: Cho chất lỏng thứ nhất và thứ hai có khối lượng lần lượt là 10g và 7g. Khối lượng riêng của chất lỏng thứ nhất lớn hơn khối lượng riêng của chất lỏng thứ hai là 300 kg/m3. Khi hai chất lỏng này trộn vào nhau, ta được hỗn hợp chất lỏng có khối lượng riêng là 850 kg/m3. Hãy tính khối lượng riêng của mỗi chất lỏng. 2. Bài toán về tam giác vuông: Cho tam giác ABC vuông tại A, đường cao AH với AH = 3cm, BH = 1cm. Hãy tính độ dài các đoạn thẳng AB và AC. 3. Bài toán về hai đường tròn: Cho hai đường tròn (O; 5cm) và (O'; 9cm) và OO' = a (cm) với a > 0. Hãy tìm tất cả các giá trị nguyên dương của a để hai đường tròn này cắt nhau. Hy vọng rằng các bạn sẽ cùng nhau giải quyết các bài toán này một cách thành công. Chúc các bạn có kết quả tốt trong kỳ thi sắp tới!