Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu học tập môn Toán 9 tập 2 - Trần Công Dũng

Tài liệu gồm 95 trang, được biên soạn bởi thầy giáo Trần Công Dũng, bao gồm tóm tắt lý thuyết, phương pháp giải toán và bài tập luyện tập môn Toán 9 tập 2, theo định hướng đề thi của sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. MỤC LỤC : PHẦN I Đại số 3. Chương 1 Hệ hai phương trình bậc nhất một ẩn 5. A Phương trình bậc nhất hai ẩn số 5. I Tóm tắt lý thuyết 5. II Phương pháp giải toán 6. III Bài tập luyện tập 7. B Hệ hai phương trình bậc nhất hai ẩn 9. I Tóm tắt lí thuyết 9. II Các dạng toán 9. C Giải hệ phương trình bằng phương pháp thế 12. I Tóm tắt lí thuyết 12. II Phương pháp giải toán 12. + Dạng 1. Giải hệ phương trình 12. + Dạng 2. Sử dụng hệ phương trình giải toán 15. D Giải hệ phương trình bằng phương pháp cộng 17. I Tóm tắt lí thuyết 17. II Các dạng toán 18. + Dạng 1. Giải hệ phương trình 18. + Dạng 2. Sử dụng hệ phương trình giải toán 20. III Bài tập luyện tập 20. E Giải bài toán bằng cách lập hệ phương trình 22. I Tóm tắt lí thuyết 22. II Các dạng toán 22. + Dạng 1. Bài toán chuyển động 22. + Dạng 2. Bài toán vòi nước 24. Chương 2 Hàm số y = ax2. Phương trình bậc hai một ẩn số 27. A Hàm số y = ax2 (a khác 0) 27. I Tóm tắt lí thuyết 27. II Phương pháp giải toán 27. B Đồ thị hàm số y = ax2 (a khác 0) 28. I Tóm tắt lí thuyết 28. II Phương pháp giải toán 29. C Phương trình bậc hai một ẩn số 32. I TÓM TẮT LÍ THUYẾT 32. II PHƯƠNG PHÁP GIẢI TOÁN 32. III BÀI TẬP LUYỆN TẬP 34. D Công thức nghiệm của phương trình bậc hai 35. I Tóm tắt lí thuyết 35. II Các dạng toán 35. + Dạng 1. Giải phương trình bậc hai 36. + Dạng 2. Điều kiện có nghiệm của phương trình bậc hai. 37. + Dạng 3. Nghiệm nguyên và nghiệm hữu tỉ của phương trình bậc hai 39. III Bài tập luyện tập 39. E HỆ THỨC VI-ÉT VÀ CÁC ỨNG DỤNG 41. I TÓM TẮT LÍ THUYẾT 41. + Dạng 1. Nhẩm nghiệm của phương trình bậc hai 42. + Dạng 2. Tìm hai số biết tổng và tích của chúng 44. + Dạng 3. Tìm giá trị của biểu thức đối xứng giữa các nghiệm 48. + Dạng 4. Tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc vào tham số 49. + Dạng 5. Xét dấu các nghiệm 52. + Dạng 6. Tìm giá trị của tham số để các nghiệm của phương trình thỏa mãn điều kiện cho trước 54. F PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI 59. I Phương pháp giải toán 59. + Dạng 1. Giải phương trình tích 59. + Dạng 2. Sử dụng ẩn phụ chuyển phương trình về phương trình bậc hai 60. + Dạng 3. Giải phương trình chứa ẩn ở mẫu 60. + Dạng 4. Giải phương trình bậc ba 61. + Dạng 5. Giải phương trình trùng phương 62. + Dạng 6. Giải phương trình hồi quy và phản hồi quy 63. + Dạng 7. Phương trình dạng (x + a)(x + b)(x + c)(x + d) = m (1) với a + b = c + d 64. + Dạng 8. Phương trình dạng (x + a)4 + (x + b)4 = c (1) 65. + Dạng 9. Sử dụng phương trình bậc hai giải phương trình chứa dấu giá trị tuyệt đối 65. + Dạng 10. Sử dụng phương trình bậc hai giải phương trình chứa căn thức 66. II Bài tập 66. G GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH 70. I Tóm tắt lí thuyết 70. II Phương pháp giải toán 70. + Dạng 1. Bài toán chuyển động 70. + Dạng 2. Bài toán về số và chữ số 71. + Dạng 3. Bài toán vòi nước 72. + Dạng 4. Bài toán có nội dung hình học 72. + Dạng 5. Bài toán về phần trăm – năng suất 73. III Bài tập luyện tập 74. PHẦN II Hình học 75. Chương 3 Góc với đường tròn 77. A Góc ở tâm – Số đo cung 77. I Tóm tắt lí thuyết 77. II Phương pháp giải toán 77. III Bài tập tự luyện 78. B Liên hệ giữa cung và dây 79. I Tóm tắt lí thuyết 79. II Phương pháp giải toán 79. III Bài tập tự luyện 80. C Góc nội tiếp 80. I Tóm tắt lí thuyết 80. II Các dạng toán 81. + Dạng 1. Giải bài toán định lượng 81. + Dạng 2. Giải bài toán định tính 82. D Góc tạo bởi tiếp tuyến và dây cung 84. I Tóm tắt lí thuyết 84. II Các dạng toán 84. + Dạng 1. Giải bài toán định tính 84. + Dạng 2. Giải bài toán định lượng 85. III Bài tập tự luyện 85. E Góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn 86. I Tóm tắt lý thuyết 86. II Phương pháp giải toán 87. III Bài tập luyện tập 88.

Nguồn: toanmath.com

Đọc Sách

Tài liệu Toán 9 chủ đề tứ giác nội tiếp
Tài liệu gồm 19 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề tứ giác nội tiếp trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Định nghĩa: Tứ giác nội tiếp đường tròn là tứ giác có bốn đỉnh nằm trên đường tròn đó. 2. Các tính chất: Cho tứ giác ABCD nội tiếp đường tròn (O), khi đó: – Tổng số đo hai góc đối diện bằng 180 độ. – Nếu một tứ giác có tổng số đo hai góc đối diện bằng 180 độ thì tứ giác đó nội tiếp được đường tròn. 3. Một số dấu hiệu nhận biết tứ giác nội tiếp. – Tứ giác có tổng hai góc đối bằng 180 độ. – Tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện. – Tứ giác có bốn đỉnh cách đều một điểm cố định (mà ta có thể xác định được). Điểm đó là tâm của đường tròn ngoại tiếp tứ giác. – Tứ giác có hai đỉnh kề cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc α (dựa vào kiến thức cung chứa góc). B. Bài tập.
Tài liệu Toán 9 chủ đề phương trình bậc nhất hai ẩn
Tài liệu gồm 12 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề phương trình bậc nhất hai ẩn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm phương trình bậc nhất hai ẩn. – Phương trình bậc nhất hai ẩn x y là phương trình có dạng: ax by c (trong đó abc là các số cho trước a ≠ 0 hoặc b ≠ 0). – Nếu điểm Mx y 0 0 thỏa mãn: 0 0 ax by c thì Mx y 0 0 là 1 nghiệm của phương trình. – Trong mặt phẳng tọa độ Oxy mỗi nghiệm x y 0 0 của phương trình ax by c được biểu diễn bởi 1 điểm có tọa độ (x y 0 0) 0 x: Hoành độ và 0 y: Tung độ. 2. Tập nghiệm của phương trình bậc nhất hai ẩn. – Phương trình: 0 0 ax by c luôn có vô số nghiệm. Tập nghiệm của phương trình được biểu diễn bởi đường thẳng (d ax by c). – Nếu a b 0 0 thì phương trình có nghiệm: c x a y R và đường thẳng song song hoặc trùng với Oy. – Nếu a b 0 0 thì phương trình có nghiệm: x R c y b và đường thẳng song song hoặc trùng với Ox. – Nếu a b 0 0 thì phương trình có nghiệm: x R a c y x b b hoặc y R b c x y a a khi đó đường thẳng d cắt cả hai trục tọa độ. Đường thẳng d là đồ thị hàm số: a c y x b b. B. Bài tập và các dạng toán. Dạng 1 : Xét xem một cặp số có là nghiệm của phương trình bậc nhất hai ẩn hay không? Cách giải: Nếu cặp số thực (x y 0 0) thỏa mãn 0 0 ax by c thì nó được gọi là nghiệm của phương trình ax by c. Dạng 2 : Tìm điều kiện của tham số để đường thẳng ax by c thỏa mãn điều kiện cho trước. Cách giải: – Nếu a b 0 0 thì phương trình có nghiệm: c x a y R và đường thẳng song song hoặc trùng với Oy. – Nếu a b 0 0 thì phương trình có nghiệm: x R c y b và đường thẳng song song hoặc trùng với Ox. Dạng 3 : Tìm các nghiệm nguyên của phương trình bậc nhất hai ẩn. Cách giải: Để tìm các nghiệm nguyên của phương trình bậc nhất hai ẩn ax by c ta làm như sau: + Bước 1: Tìm một nghiệm nguyên (x y 0 0) của phương trình. + Bước 2: Đưa phương trình về dạng ax x by y 0 từ đó dễ dàng tìm được các nghiệm nguyên của phương trình. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề hệ hai phương trình bậc nhất hai ẩn
Tài liệu gồm 11 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hệ hai phương trình bậc nhất hai ẩn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm hệ phương trình bậc nhất hai ẩn. – Hệ phương trình bậc nhất hai ẩn là hệ phương trình có dạng: ax by c ax by c. Trong đó: aba b là các số thực cho trước và 22 2 2 ab a b 0 0 và x y là ẩn. – Nếu hai phương trình (1) (2) có nghiệm chung (x y 0 0) thì (x y 0 0) gọi là nghiệm của hệ phương trình. – Nếu hai phương trình (1) (2) không có nghiệm chung thì hệ phương trình vô nghiệm. – Giải hệ phương trình là tìm tất cả các nghiệm của nó (tập nghiệm). 2. Minh họa hình học tập nghiệm của hệ phương trình bậc nhất hai ẩn. Xét hệ phương trình: ax by c d ax by c d. – Tập nghiệm của hệ phương trình bậc nhất hai ẩn được biểu diễn bởi tập hợp các điểm chung của hai đường thẳng (d ax by c) và (d ax by c). +) TH1: Nếu d cắt d’ thì hệ phương trình có một nghiệm duy nhất. +) TH2: d // d’ thì hệ phương trình vô nghiệm. +) TH3: d ≡ d’ thì hệ phương trình có vô số nghiệm. 3. Tổng quát. Xét hệ phương trình: ax by c a b c ax by c a b c. – Hệ phương trình có nghiệm duy nhất a a b b. – Hệ phương trình vô nghiệm a a b c b c. – Hệ phương trình có vô số nghiệm a a b c b c. 4. Hệ phương trình tương đương. Hai hệ phương trình được gọi là tương đương với nhau nếu chúng có cùng tập nghiệm. B. Bài tập và các dạng toán. Dạng 1 : không giải hệ phương trình dự đoán số nghiệm của hệ phương trình bậc nhất hai ẩn. Cách giải: Xét hệ phương trình: ax by c a b c ax by c a b c. – Hệ phương trình có nghiệm duy nhất a b a b. – Hệ phương trình vô nghiệm abc abc. – Hệ phương trình có vô số nghiệm abc abc. Dạng 2 : Kiểm tra một cặp số cho trước có phải là nghiệm của hệ phương trình bậc nhất hai ẩn hay không? Cách giải: Cặp số (x y 0 0) là nghiệm của hệ phương trình: ax by c a b c ax by c a b c khi và chỉ khi nó thỏa mãn cả hai phương trình của hệ. Dạng 3 : Giải hệ phương trình bằng phương pháp đồ thị. Cách giải: + Bước 1: Vẽ hai đường thẳng (d ax by c d a x b y c) trên cùng một hệ trục tọa độ. + Bước 2: Xác định nghiệm của hệ phương trình dựa vào đồ thị đã vẽ ở bước 1. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề giải hệ phương trình bằng phương pháp thế
Tài liệu gồm 19 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề giải hệ phương trình bằng phương pháp thế trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Quy tắc thế. – Từ một phương trình của HPT đã cho (coi như phương trình thứ nhất), ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thứ hai để được một phương trình mới (chỉ còn một ẩn). – Dùng phương trình mới ấy để thay thế cho phương trình thứ hai trong hệ phương trình và giữ nguyên PT thứ nhất, ta được hệ phương trình mới tương đương với hệ phương trình đã cho. 2. Giải và biện luận phương trình: ax + b = 0. – Nếu 0 b a x a. – Nếu a ≠ 0 và b ≠ 0 thì phương trình vô nghiệm. – Nếu a = 0 và b = 0 thì phương trình có vô số nghiệm. B. Bài tập và các dạng toán. Dạng 1 : Giải hệ phương trình bằng phương pháp thế. Cách giải: Căn cứ vào quy tắc thế để giải HPT bậc nhất hai ẩn bằng phương pháp thế ta làm như sau: – Từ một phương trình của hệ phương trình đã cho (coi như PT thứ nhất), ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thứ hai để được một phương trình mới (chỉ còn một ẩn). – Dùng phương trình mới ấy để thay thế cho phương trình thứ hai trong hệ phương trình và giữ nguyên phương trình thứ nhất, ta được HPT mới tương đương với hệ phương trình đã cho. Dạng 2 : Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn. Cách giải: – Biến đổi hệ phương trình đã cho về hệ phương trình bậc nhất hai ẩn. – Giải hệ phương trình bậc nhất hai ẩn tìm được. Dạng 3 : Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Cách giải: Ta thực hiện theo các bước sau: + Bước 1: Chọn ẩn phụ cho các biểu thức của hệ phương trình đã cho để được hệ phương trình bậc nhất hai ẩn mới ở dạng cơ bản (tìm điều kiện của ẩn phụ nếu có). + Bước 2: Giải hệ phương trình bậc nhất hai ẩn bằng phương pháp thế, từ đó tìm nghiệm của hệ phương trình đã cho. Dạng 4 : Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Cách giải: Ta thường sử dụng các kiến thức sau: – Hệ phương trình bậc nhất hai ẩn có nghiệm 0 0 ax by c x y ax by c. – Đường thẳng d ax by c đi qua điểm M x y ax by c. BÀI TẬP VỀ NHÀ.