Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 2 lớp 11 môn Toán năm 2023 2024 trường THPT Nguyễn Đăng Đạo Bắc Ninh

Nội dung Đề khảo sát lần 2 lớp 11 môn Toán năm 2023 2024 trường THPT Nguyễn Đăng Đạo Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng lần 2 môn Toán lớp 11 năm học 2023 – 2024 trường THPT Nguyễn Đăng Đạo, tỉnh Bắc Ninh; đề thi mã đề 111, gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn Đề khảo sát lần 2 Toán lớp 11 năm 2023 – 2024 trường THPT Nguyễn Đăng Đạo – Bắc Ninh : + Để đo chiều rộng của một con đường mà không gây cản trở giao thông cán bộ đo đạc đứng ở 2 địa điểm M N cách nhau 12 mét ở cùng một bên đường quan sát địa điểm P ở bên kia đường (xem hình vẽ minh họa). Kết quả đo đạc như sau: NMP MNP 65 79. Tính chiều rộng của con đường (kết quả lấy gần đúng đến 2 chữ số thập phân). + Cho hình chóp S.ABCD có đáy là hình bình hành. Các tam giác SAC và SBD là tam giác đều cạnh a. Gọi I J lần lượt là trung điểm của SA SB. Một mặt phẳng (α) di động qua IJ sao cho (α) cắt các cạnh SC SD lần lượt tại M và N. Gọi P là giao điểm của IM và JN. Tìm giá trị nhỏ nhất của độ dài đoạn thẳng CP. + Giá thuê 1 phòng của một khách sạn là 600 000 đồng một ngày cho hai ngày đầu tiên và 450 000 đồng cho mỗi ngày tiếp theo. Gọi y (đồng) là số tiền phải trả khi thuê 1 phòng của khách sạn đó trong x ngày. Lập công thức tính y theo x. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra chất lượng đội tuyển Toán 11 năm 2018 - 2019 trường THPT Hậu Lộc 4 - Thanh Hóa
Đề kiểm tra chất lượng đội tuyển Toán 11 năm 2018 – 2019 trường THPT Hậu Lộc 4 – Thanh Hóa gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút (không kể thời gian giao đề), đề nhằm tuyển chọn các em học sinh khối 11 có năng khiếu môn Toán để bồi dưỡng, đào tạo và tạo điều kiện để các em được thử sức ở các cuộc thi cấp tỉnh, quốc gia … . Đề thi HSG Toán 11 có lời giải chi tiết và thang điểm. Trích dẫn đề kiểm tra chất lượng đội tuyển Toán 11 năm 2018 – 2019 trường THPT Hậu Lộc 4 – Thanh Hóa : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD, có đỉnh A (-3;1), đỉnh C nằm trên đường thẳng Δ: x – 2y – 5 = 0. Trên tia đối của tia CD lấy điểm E sao cho CE = CD, biết N (6;-2) là hình chiếu vuông góc của D lên đường thẳng BE. Xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD. [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC nội tiếp đường tròn (C): x^2 + y^2 = 25, đường thẳng AC đi qua điểm K (2;1). Gọi M, N là chân các đường cao kẻ từ đỉnh B và C. Tìm tọa độ các đỉnh tam giác ABC, biết phương trình đường thẳng MN là 4x – 3y + 10 = 0 và điểm A có hoành độ âm. + Cho hàm số y = x^2 + 2x – 3 (*) và đường thẳng d: y = 2mx – 4. Lập bảng biến thiên và vẽ đồ thị (P) của hàm số (*). Tìm m để d cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn (x1 + m)/(x2 – 1) + (x2 + m)/(x1 – 1) = -6.
Đề kiểm tra chất lượng đội tuyển HSG Toán 11 năm học 2016 - 2017 trường Lê Lợi - Thanh Hóa lần 1
Đề kiểm tra chất lượng đội tuyển học sinh giỏi môn Toán 11 năm học 2016 – 2017 trường THPT Lê Lợi – Thanh Hóa lần 1 gồm 6 câu tự luận. Các nội dung thi gồm: phương trình lượng giác, biện luận phương trình ẩn tham số m, giải phương trình vô tỉ, giải hệ phương trình, tổ hợp, hình học tọa độ phẳng và hình học không gian. Đề thi có lời giải chi tiết.