Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các chuyên đề học tập lớp 7 môn Toán phần Hình học

Nội dung Các chuyên đề học tập lớp 7 môn Toán phần Hình học Bản PDF - Nội dung bài viết Các chuyên đề học tập lớp 7 môn Toán phần Hình học Các chuyên đề học tập lớp 7 môn Toán phần Hình học Dựa vào tài liệu với 469 trang này, học sinh sẽ được trình bày lý thuyết chính và phương pháp giải các dạng bài tập môn Toán lớp 7 phần Hình học. Các chuyên đề bao gồm: 1. Góc ở vị trí đặc biệt: Học sinh sẽ học về các loại góc đặc biệt và cách tính toán chúng. 2. Hai đường thẳng song song: Học sinh sẽ được hướng dẫn cách nhận biết và xác định hai đường thẳng song song. 3. Tiên đề Ơ-clit: Cung cấp kiến thức và ứng dụng công thức ơ-clit vào việc giải bài tập. 4. Định lí, chứng minh định lí: Học sinh sẽ tìm hiểu về các định lí trong Hình học và cách chứng minh chúng. 5. Tổng các góc của một tam giác: Hướng dẫn học sinh cách tính tổng các góc trong một tam giác. 6. Hai tam giác bằng nhau: Học sinh sẽ tìm hiểu về các trường hợp hai tam giác bằng nhau và cách áp dụng vào việc giải bài tập. 7. Trường hợp bằng nhau của tam giác: Hướng dẫn học sinh nhận biết và chứng minh các trường hợp bằng nhau của tam giác. 8. Các trường hợp bằng nhau của tam giác vuông: Học sinh sẽ được hướng dẫn cách chứng minh các trường hợp bằng nhau của tam giác vuông. 9.1 & 9.2. Tam giác cân và đường trung trực của đoạn thẳng: Hướng dẫn học sinh về tam giác cân và đường trung trực của đoạn thẳng trong tam giác. Với nội dung chi tiết, cụ thể và dễ hiểu, tài liệu này sẽ giúp học sinh nắm vững kiến thức Hình học cần thiết cho lớp 7 một cách hiệu quả và dễ dàng.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề làm quen với số thập phân vô hạn tuần hoàn Toán 7
Tài liệu gồm 19 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề làm quen với số thập phân vô hạn tuần hoàn trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 : Nhận biết được phân số viết được dưới dạng số thập phân hữu hạn hay vô hạn tuần hoàn. – Viết phân số dưới dạng phân số tối giản với mẫu dương. – Phân tích mẫu số đó ra thừa số nguyên tố. – Nếu mẫu này không có ước nguyên tố khác 2 và 5 thì phân số viết được dưới dạng số thập phân hữu hạn. – Nếu mẫu này có ước nguyên tố khác 2 và 5 thì phân số viết được dưới dạng số thập phân vô hạn tuần hoàn. Dạng 2 : Nhận biết được số thập phân hữu hạn và số thập phân vô hạn tuần hoàn, xác định được chu kì của một số thập phân vô hạn tuần hoàn. Viết phân số dưới dạng số thập phân và ngược lại. – Căn cứ vào khái niệm để nhận biết số thập phân hữu hạn hay vô hạn tuần hoàn. – Xét các chữ số sau dấu phẩy để xác định chu kỳ nếu là số thập phân vô hạn tuần hoàn. – Viết phân số dưới dạng số thập phân (thực hiện phép chia lấy tử chia cho mẫu, có thể sử dụng máy tính cầm tay để hỗ trợ). – Viết số thập phân dưới dạng phân số: + Viết dưới dạng phân số thập phân rối rút gọn đến tối giản nếu là số thập phân hữu hạn. + Nếu số thập phân vô hạn tuần hoàn có chu kì bắt đầu ngay sau dấu phẩy thì ta lấy chu kì làm tử còn mẫu là một số gồm các chữ số 9 với số chữ số 9 bằng số chữ số của chu kì. + Nếu số thập phân vô hạn tuần hoàn có chu kì không bắt đầu ngay sau dấu phẩy thì ta lấy số gồm các chữ số trước chu kì và chu kì trừ đi số gồm các chữ số trước chu kì là tử, còn mẫu là một số gồm các chữ số 9 kèm theo các chữ số 0, số chữ số 9 bằng số chữ số của chu kì, số chữ số 0 bằng số chữ số trước chu kì. Dạng 3 : Làm tròn số thập phân. – Áp dụng quy ước làm tròn số và độ chính xác cho trước. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề lũy thừa của một số hữu tỉ Toán 7
Tài liệu gồm 29 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề lũy thừa của một số hữu tỉ trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÝ THUYẾT. 1. Định nghĩa lũy thừa với số mũ tự nhiên. 2. Tích và thương của hai lũy thừa cùng cơ số. 3. Lũy thừa của lũy thừa. 4. Lũy thừa của một tích, thương. 5. Lũy thừa với số mũ nguyên âm. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Thực hiện phép tính về lũy thừa. Vận dụng định nghĩa và quy tắc phép tính ở trên để giải. Dạng 2 . Tìm thành phần chưa biết. 1. Để tìm số hữu tỉ x trong cơ số của một lũy thừa, ta thường biến đổi hai vế của đẳng thức về lũy thừa cùng số mũ, rồi sử dụng nhận xét. 2. Để tìm số x ở số mũ của lũy thừa, ta thường biến đổi hai vế của đẳng thức về lũy thừa cùng cơ số, rồi sử dụng nhận xét. Dạng 3 . So sánh hai lũy thừa. Để so sánh hai lũy thừa ta có thể biến đổi đưa hai lũy thừa về cùng cơ số hoặc đưa hai lũy thừa về cùng số mũ, rồi sử dụng nhận xét. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề cộng, trừ, nhân, chia số hữu tỉ Toán 7
Tài liệu gồm 81 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề cộng, trừ, nhân, chia số hữu tỉ trong chương trình môn Toán 7. A. CỘNG, TRỪ SỐ HỮU TỈ PHẦN I. TÓM TẮT LÍ THUYẾT. PHẦN II. CÁC DẠNG BÀI. Dạng 1 . Thực hiện phép tính. + Đưa hai số hữu tỉ về hai phân số cùng mẫu rồi thực hiện cộng (trừ) các tử số. Sau đó rút gọn kết quả (nếu có). + Vận dụng tính chất giao hoán, kết hợp, quy tắc dấu ngoặc để tính nhanh. Dạng 2 . Tìm x. + Thực hiện phá ngoặc theo thứ tự thực hiện phép tính để đưa đẳng thức về các dạng: a x b x b a. Dạng 3 . Bài toán thực tế. Để giải một bài toán thực tế liên quan đến cộng, trừ số hữu tỉ, ta thường làm như sau: + Bước 1: Phân tích bài toán, từ các dữ kiện đề bài xác định các giá trị của cùng một đại lượng (ví dụ: các giá trị của một đoạn đường, một chiếc bánh, một quyển sách, một đơn vị thời gian …) và thiết lập mối quan hệ giữa các đại lượng trong bài toán. + Bước 2: Dựa vào quy tắc cộng, trừ số hữu tỉ, thực hiện các phép toán tương ứng. + Bước 3: Kết luận. PHẦN III. BÀI TẬP TỰ LUYỆN. B. NHÂN, CHIA SỐ HỮU TỈ PHẦN I. TÓM TẮT LÍ THUYẾT. PHẦN II. CÁC DẠNG BÀI. Dạng 1 . Thực hiện phép tính. Để nhân chia hai số hữu tỉ ta thực hiện các bước sau: + Bước 1: Viết hai số hữu tỉ dưới dạng phân số. + Bước 2: Áp dụng quy tắc nhân, chia phân số. + Bước 3: Rút gọn kết quả (nếu có thể). Dạng 2 . Tìm x. + Thực hiện phá ngoặc theo thứ tự thực hiện phép tính để đưa đẳng thức về các dạng: a x b x b a. Dạng 3 . Bài toán thực tế. Để giải một bài toán thực tế liên quan đến nhân, chia số hữu tỉ, ta thường làm như sau: + Bước 1: Phân tích bài toán, từ các dữ kiện đề bài xác định các giá trị của cùng một đại lượng (ví dụ: các giá trị của một đoạn đường, một chiếc bánh, một quyển sách, một đơn vị thời gian …) và thiết lập mối quan hệ giữa các đại lượng trong bài toán. + Bước 2: Dựa vào quy tắc nhân, chia số hữu tỉ, thực hiện các phép toán tương ứng. + Bước 3: Kết luận. PHẦN III. BÀI TẬP TỰ LUYỆN.
Chuyên đề tập hợp các số hữu tỉ Toán 7
Tài liệu gồm 36 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề tập hợp các số hữu tỉ trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. 1. Khái niệm số hữu tỉ và biểu diễn số hữu tỉ trên trục số. 2. Thứ tự trong tập hợp các số hữu tỉ. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Nhận biết các số hữu tỉ và biểu diễn số hữu tỉ trên trục số. – Muốn xác định xem một số có là số hữu tỉ hay không, ta hãy biến đổi xem số đó có dạng a/b với a b b 0 hay không. – Biểu diễn các số hữu tỉ trên trục số: + Bước 1: Đưa số hữu tỉ về dạng phân số tối giản có mẫu dương m/n. + Bước 2: Chia đoạn thẳng đơn vị thành n phần bằng nhau (số phần bằng mẫu số). Nếu số hữu tỉ dương thì chia về bên phải gốc O, nếu số hữu tỉ âm thì chia về bên trái gốc O. + Bước 3: Lấy |m| phần (bằng tử số) trên đoạn tính từ gốc toạ độ, điểm vừa được lấy là điểm biểu diễn của phân số. Dạng 2 . So sánh các số hữu tỉ. – Viết các số hữu tỉ dưới dạng phân số có cùng mẫu dương: So sánh các tử số, phân số nào có tử nhỏ hơn thì phân số đó nhỏ hơn. – So sánh các số trung gian. – So sánh với phần hơn hoặc phần bù. – So sánh thương hai số hữu tỉ (khác 0) với 1. – Áp dụng tính chất bắc cầu và các bất đẳng thức đã chứng minh trong bài. PHẦN III . BÀI TẬP TỰ LUYỆN.