Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Bình Lục - Hà Nam

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bình Lục, tỉnh Hà Nam; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Bình Lục – Hà Nam : + Cho biểu thức A. a) Rút gọn biểu thức A. b) Tính giá trị của biểu thức A tại x thỏa mãn |x + 1| = |−1|. c) Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên. + Cho hình vuông ABCD có độ dài cạnh bằng a, M là một điểm bất kì trên cạnh BC. Tia Ax vuông góc với AM cắt đường thẳng CD tại K. Gọi I là trung điểm của MK. Tia AI cắt đường thẳng CD tại E. Đường thẳng qua M song song với AB cắt AI tại N. a) Tứ giác MNKE là hình gì? Vì sao? b) Chứng minh AM2 = KC. KE. c) Chứng minh chu vi tam giác MEC không đổi khi M di động trên cạnh BC. d) Gọi F là giao điểm của AM với đường thẳng DC. Chứng minh 1/AF2 + 1/AM2 không phụ thuộc vào vị trí điểm M. + Hai vòi nước cùng chảy vào một bể không có nước sau 4 giờ thì đầy bể. Người ta mở 2 vòi chảy trong 2 giờ, sau đó tắt vòi 1 đi, vòi 2 chảy tiếp trong 3 giờ nữa thì bể đầy. Hỏi mỗi vòi chảy một mình trong bao lâu thì đầy bể.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát HSG Toán 8 năm 2023 - 2024 phòng GDĐT Ninh Giang - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát năng lực học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Ninh Giang, tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 27 tháng 01 năm 2024. Trích dẫn Đề khảo sát HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Ninh Giang – Hải Dương : + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Kẻ HM vuông góc với AB (M AB), HN vuông góc với AC (N AC) a) Chứng minh BM CN 1 AB AC b) Gọi I là trung điểm HC. Qua H kẻ đường thẳng vuông góc với AI cắt AB tại E. Chứng minh B là trung điểm AE c) Trên tia đối của tia BC lấy điểm S. Tia SA cắt HM, HN lần lượt tại P và Q. Chứng minh BP song song với CQ. + Đa thức Q x nếu chia cho x − 1 được số dư bằng 4, nếu chia cho x − 3 được số dư bằng 14. Tìm đa thức dư của phép chia Q x cho x 1 3. + Tìm số nguyên n sao 2 n 2n 1 4 là số nguyên tố.
Đề khảo sát HSG Toán 8 năm 2023 - 2024 trường THCS Song Mai - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi môn Toán 8 năm học 2023 – 2024 trường THCS Song Mai, thành phố Bắc Giang, tỉnh Bắc Giang; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 8 năm 2023 – 2024 trường THCS Song Mai – Bắc Giang : + Tìm giá trị nhỏ nhất của biểu thức 2 A x y xy y x 13 4 2 16 2019. + Chứng minh rằng: 3 2 n 3 chia hết cho 48 với mọi số nguyên lẻ n. + Cho tam giác ABC vuông tại A AB AC đường cao AH. Gọi D là điểm đối xứng của A qua H. Đường thẳng qua D song song với AB cắt BC và AC lần lượt ở M và N. a) Chứng minh tứ giác ABDM là hình thoi. b) Chứng minh AM vuông góc với CD. c) Gọi I là trung điểm của MC chứng minh rằng IN vuông góc HN.
Đề giao lưu HSG Toán 8 năm 2023 - 2024 phòng GDĐT Bá Thước - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Bá Thước, tỉnh Thanh Hoá; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Bá Thước – Thanh Hoá : + Cho ba số nguyên x, y, z thỏa mãn 22 2 xy z 2. Chứng minh rằng 2 2 x y chia hết cho 48. + Cho ∆ABC vuông tại A có 0 ABC 75 trên cạnh AC lấy 2 điểm E và P sao cho ABE EBP PBC. Gọi I là chân đường vuông góc hạ từ C xuống đường thẳng BP, đường thẳng CI cắt BE ở F. 1. Chứng minh: ∆ECF cân. 2. Trên tia đối tia EB lấy điểm K sao cho EK = BC, tính số đo các góc của ∆BCK. 3. Gọi H là hình chiếu vuông góc của C trên BK, D là trung điểm của đoạn CH, L là hình chiếu vuông góc của H trên BD. Chứng minh KL vuông góc với LC. + Cho các số a, b, c khác 0 và đôi một khác nhau thoả mãn.
Đề giao lưu HSG Toán 8 năm 2023 - 2024 phòng GDĐT Quảng Xương - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quảng Xương, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 27 tháng 01 năm 2024. Trích dẫn Đề giao lưu HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Quảng Xương – Thanh Hoá : + Chọn ngẫu nhiên hai số nguyên dương nhỏ hơn 13. Tính xác suất để hai số được chọn là hai số nguyên tố trong đó có một số chẵn và một số lẻ. + Cho a là số nguyên dương và b là ước nguyên dương của 2a2. Chứng minh rằng: a2 + b không là số chính phương. + Cho tam giác ABC vuông cân tại A. Trên cạnh BC lấy điểm M bất kì. Kẻ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Qua B kẻ đường thẳng (d1) song song với AC, qua C kẻ đường thẳng (d2) song song với AB. Gọi D là giao điểm của (d1) và (d2). 1. Chứng minh: tứ giác AEMF là hình chữ nhật và tổng EM/AC + FM/AB không phụ thuộc vào vị trí điểm M. 2. Gọi O là giao điểm của AM và EF, I là giao điểm của DE với BF. Chứng minh DE vuông góc với BF tại I và OI = OM. 3. Kí hiệu S1 là diện tích tam giác BEM; S2 là diện tích tam giác CFM. Xác định vị trí điểm M để S1, S2 lớn nhất.