Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hướng dẫn giải bài toán cực trị số phức - Lương Đức Trọng

Tài liệu gồm 12 trang được biên soạn bởi tác giả Lương Đức Trọng trình bày 2 phương pháp giải bài toán cực trị số phức – một dạng toán số phức vận dụng cao trong chương trình Giải tích 12 chương 4. Hai phương pháp được nói đến trong tài liệu đó là: + Phương pháp đại số. + Phương pháp hình học. Đây là lớp các bài toán vận dụng cao trong đề thi THPT Quốc gia môn Toán, để giải được dạng toán này, cần nắm vững các lý thuyết sau đây: Bất đẳng thức tam giác: + |z1 + z2| ≤ |z1| + |z2|, dấu “=” khi z1 = kz2 với k ≥ 0 + |z1 − z2| ≤ |z1| + |z2|, dấu “=” khi z1 = kz2 với k ≤ 0 + |z1 + z2| ≥ ||z1| − |z2||, dấu “=” khi z1 = kz2 với k ≤ 0 + |z1 − z2| ≥ ||z1| − |z2||, dấu “=” khi z1 = kz2 với k ≥ 0 [ads] 2. Công thức trung tuyến: |z1 + z2|^2 + |z1 − z2|^2 = 2(|z1|^2 + |z2|^2) 3. Tập hợp điểm: + |z − (a + bi)| = r: Đường tròn tâm I(a; b) bán kính r + |z − (a1 + b1i)| = |z − (a2 + b2i)|: Đường trung trực của AB với A(a1; b1), B(a2; b2) + |z − (a1 + b1i)| + |z − (a2 + b2i)| = 2a: – Đoạn thẳng AB với A(a1; b1), B(a2; b2) nếu 2a = AB – Elip (E) nhận A, B làm hai tiêu điểm với độ dài trục lớn là 2a nếu 2a > AB Đặc biệt |z + c| + |z − c| = 2a: Elip (E) : x^2/a^2 + y^2/b^2 = 1 với b = √(a^2 − c^2)

Nguồn: toanmath.com

Đọc Sách

4 đề trắc nghiệm chuyên đề số phức - Bùi Thế Việt
Tài liệu gồm 44 trang bao gồm 4 đề trắc nghiệm chuyên đề số phức do tác giả Bùi Thế Việt biên soạn, mỗi đề gồm 105 câu trắc nghiệm số phức với phần lớn là các câu hỏi và bài toán có độ khó cao, tài liệu thích hợp để tìm hiểu và rèn luyện các bài toán vận dụng cao về chủ đề số phức, đây là dạng toán thường được sử dụng để phát triển các câu phân loại trong đề thi THPT Quốc gia môn Toán, đề tuyển sinh Đại học – Cao đẳng môn Toán. Trích dẫn tài liệu 4 đề trắc nghiệm chuyên đề số phức – Bùi Thế Việt : + Cho số phức u = 2 − 5i và v = −3 + 2i. Nhận xét nào sau đây là sai? A. u − v = 5 − 7i. B. 3u − v = 9 + 9i. C. u + v = −1 − 3i. D. 2u − 3v = 13 − 16i. [ads] + Khi số phức z thay đổi tùy ý thì tập hợp các số 2z + 2z‾ là? A. Tập hợp các số thực dương. B. Tập hợp các số thực không âm. C. Tập hợp các số thực. D. Tập hợp các số phức không phải số ảo. + Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z − 3| = |z + i|. A. Đường thẳng y = −4x + 1. B. Đường thẳng y = −5x + 3. C. Đường thẳng y = −3x + 4. D. Đường thẳng y = −x + 3.
600 câu hỏi trắc nghiệm chuyên đề số phức - Nhóm Toán
Tài liệu 600 câu hỏi trắc nghiệm chuyên đề số phức được biên soạn bởi quý thầy, cô giáo trên groups Nhóm Toán gồm 80 trang tuyển chọn các bài toán số phức hay và đặc sắc, giúp tạo nguồn đề cho giáo viên và giúp học sinh có thêm nhiều bài tập để rèn luyện nâng cao kỹ năng giải toán trắc nghiệm số phức, tài liệu đáp ứng xu hướng đề thi trắc nghiệm môn Toán mà Bộ Giáo dục và Đào tạo đang triển khai. 600 câu hỏi số phức trong tài liệu được được chia nhỏ thành 7 đề, mỗi đề gồm 70 đến 100 câu, các câu hỏi đều có đáp án, thầy, cô và các em có thể tra cứu đáp án câu hỏi dựa vào bảng đáp án ở sau mỗi đề. Trích dẫn tài liệu 600 câu hỏi trắc nghiệm chuyên đề số phức – Nhóm Toán : + Trong các kết luận sau, kết luận nào sai? A. Mô đun của số phức z là một số thực. B. Mô đun của số phức z là một số thực dương. C. Mô đun của số phức z là một số phức. D. Mô đun của số phức z là một số thực không âm. [ads] + Gọi A là điểm biểu diễn của số phức z = 3 +2i và B là điểm biểu diễn của số phức z’ = 2 + 3i. Tìm mệnh đề đúng của các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua gốc tọa độ O. B. Hai điểm A và B đối xứng với nhau qua trục tung. C. Hai điểm A và B đối xứng nhau qua trục hoành. D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x. + Trong mặt phẳng phức, tập hợp điểm biểu diễn cho số phức z thỏa |z + 3 – 2i| = 4 là: A. Đường tròn tâm I(-3;2), bán kính R = 4. B. Đường tròn tâm I(3;-2), bán kính R = 16. C. Đường tròn tâm I(3;-2), bán kính R = 4. D. Đường tròn tâm I(-3;2), bán kính R = 16.