Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phát triển các câu VD - VDC trong đề tham khảo TN THPT 2021 môn Toán

Tài liệu gồm 60 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Giáo Viên Toán Việt Nam, phân tích, định hướng tìm lời giải và xây dựng các bài toán tương tự các câu vận dụng – vận dụng cao trong đề thi tham khảo tốt nghiệp THPT năm 2021 môn Toán (câu 41 – câu 42 – câu 43 – câu 44 – câu 45 – câu 46 – câu 47 – câu 48 – câu 49 – câu 50). Trích dẫn tài liệu phát triển các câu VD – VDC trong đề tham khảo TN THPT 2021 môn Toán: + Đây là bài toán tính tích phân của hàm hợp. Để tính được tích phân trên ta phải thực hiện phép đổi biến để đưa về hàm đã cho. Cụ thể các bước thực hiện như sau: Bước 1: Đặt 2sin 1 x t. Bước 2: Biểu thị cos dx x theo tdt. Bước 3: Đổi cận và tính tích phân d b a f t t. Đây là dạng toán thuộc mức độ vận dụng, việc nhận ra hướng giải đòi hỏi học sinh phải nắm chắc các khái niệm và tính chất của tích phân cũng như các phương pháp tính tích phân. Học sinh thường lúng túng, và dễ mắc sai lầm khi tách cận hoặc quên nhân thêm phân số 1 2 để tính 3 1 1 d 2 I f t t dẫn đến có thể chọn các đáp án nhiễu. + Hướng phát triển: Xét các số phức thỏa mãn điều kiện (cho một giả thiết về modun, một giả thiết về số thuần ảo/ số thực) đưa về phương trình hoặc hệ phương trình. Nếu cho giả thiết số thuần ảo thì chỉ cần xác định phần thực và cho bằng 0. Nếu cho giả thiết là số thực thì chỉ cần xác định phần ảo và cho bằng 0. + Bài toán trên là bài toán về tính thể tích khối chóp liên quan góc giữa một đường thẳng và mặt phẳng. Thông thường đề bài hay cho góc giữa một cạnh bên và mặt đáy của hình chóp liên quan đến chân đường cao của hình chóp, tức hình chiếu của đường thẳng lên mặt phẳng tương đối dễ xác định, thì dạng bài này đề lại cho góc giữa một đường thẳng và mặt phẳng mà tương đối khó xác định hình chiếu của đường lên mặt hơn. Khi xác định được góc giữa đường thẳng và mặt phẳng suy ra độ dài đường cao, từ đó tính thể tích khối chóp. Để làm tốt được bài tập dạng này các em cần nắm chắc phương pháp xác định góc giữa đường thẳng và mặt phẳng sau đây.

Nguồn: toanmath.com

Đọc Sách

Đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề
Nội dung Đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề Bản PDF - Nội dung bài viết Đề tham khảo THPTQG 2020 môn Toán và bài toán phát triển Đề tham khảo THPTQG 2020 môn Toán và bài toán phát triển Tài liệu đề tham khảo THPTQG 2020 môn Toán được biên soạn bởi nhóm Strong Team Toán VD – VDC, gồm 105 trang chứa các câu hỏi và bài toán minh họa trong đề thi. Tất cả các bài toán đều được giải chi tiết theo nhiều cách khác nhau, giúp học sinh hiểu rõ hơn về cách giải và rèn luyện kỹ năng ra đề. Tài liệu được chia thành hai phần tùy theo mức độ nhận thức: Phần 1: Mức độ Nhận biết – Thông hiểu từ trang 1 đến trang 68. Phần 2: Mức độ Vận dụng từ trang 69 đến trang 105. Ví dụ về các bài toán trong tài liệu: Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng cắt hình nón theo thiết diện là tam giác vuông diện tích bằng 4. Tìm thể tích của khối nón. Cho hàm số y = f(x) liên tục trên R, gọi S là tập hợp các giá trị nguyên m để phương trình f(sin x) = 3sinx + m có nghiệm thuộc khoảng (0;π). Tính tổng các phần tử của S. Trong không gian Oxyz, mặt cầu (S) : x^2 + y^2 + z^2 − 4x − 2y + 2z − 3 = 0 và điểm M (4; 2; −2). Điểm M thuộc tâm, trên, trong hay ngoài mặt cầu (S)? Đề tham khảo này không chỉ giúp học sinh ôn tập hiệu quả mà còn phát triển khả năng giải quyết các dạng toán phổ biến trong đề thi THPT Quốc Gia môn Toán.
Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán
Nội dung Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán Bản PDF - Nội dung bài viết Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán: "Dựa trên " Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán: "Dựa trên " Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán dựa trên nền tảng của chương trình học và kiến thức cơ bản trong sách giáo khoa. Đề thi được xây dựng với mục tiêu giúp học sinh rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và phân tích một cách logic và tổng hợp thông tin. Bên cạnh việc đánh giá kiến thức, đề thi cũng tập trung vào việc khuyến khích học sinh phát triển khả năng sáng tạo, tự tin và kiên nhẫn khi giải các bài toán khó. Các câu hỏi trong đề thi không chỉ yêu cầu kiến thức mà còn đòi hỏi học sinh có khả năng áp dụng kiến thức vào các tình huống thực tế và bài toán đa chiều. Với sự phong phú và đa dạng về nội dung, đề thi tham khảo môn Toán sẽ giúp học sinh tự tin và sẵn sàng tham gia kỳ thi quan trọng. Đồng thời, đề thi cũng là công cụ hữu ích giúp giáo viên đánh giá năng lực học sinh và điều chỉnh phương pháp dạy học phù hợp.
Phân tích một số câu vận dụng trong đề minh họa THPTQG 2020 môn Toán
Nội dung Phân tích một số câu vận dụng trong đề minh họa THPTQG 2020 môn Toán Bản PDF - Nội dung bài viết Phân tích các bài toán vận dụng trong đề minh họa THPTQG 2020 môn Toán Phân tích các bài toán vận dụng trong đề minh họa THPTQG 2020 môn Toán Tài liệu được biên soạn bởi thầy giáo Nguyễn Minh Nhiên, bao gồm 39 trang trình bày lời giải chi tiết và phân tích sâu một số bài toán vận dụng cao trong đề minh họa THPT Quốc gia môn Toán năm học 2019 – 2020. Cụ thể, các bài toán được phân tích bao gồm: câu 38, câu 43, câu 46, câu 48, câu 49, và câu 50. Thông qua việc phân tích chi tiết các bài toán này, tài liệu giúp học sinh hiểu rõ hơn về cách tiếp cận và giải quyết các dạng toán vận dụng - vận dụng cao trong các bài toán thực tế.
Phân tích và bình luận đề tham khảo THPTQG 2020 môn Toán
Nội dung Phân tích và bình luận đề tham khảo THPTQG 2020 môn Toán Bản PDF - Nội dung bài viết Giới thiệu tài liệu phân tích và bình luận đề tham khảo THPTQG 2020 môn Toán Giới thiệu tài liệu phân tích và bình luận đề tham khảo THPTQG 2020 môn Toán Sytu xin gửi đến quý thầy cô giáo và các em học sinh tài liệu phân tích và bình luận đề tham khảo THPTQG 2020 môn Toán, được biên soạn bởi thầy giáo Nguyễn Xuân Chung. Tài liệu này bao gồm 13 trang chi tiết, giúp các bạn học sinh hiểu rõ hơn về cấu trúc đề thi cũng như cách thức giải các câu hỏi trong đề. Đây thực sự là một công cụ hữu ích để các em chuẩn bị tốt cho kỳ thi sắp tới.