Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán khoảng cách giữa hai đường thẳng chéo nhau

Tài liệu gồm 37 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán khoảng cách giữa hai đường thẳng chéo nhau, được phát triển dựa trên câu 37 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu bài toán khoảng cách giữa hai đường thẳng chéo nhau: A. KIẾN THỨC CẦN NHỚ 1. Khoảng cách giữa điểm và mặt phẳng Khoảng cách giữa một điểm và một mặt phẳng là khoảng cách từ điểm đó tới hình chiếu vuông góc của nó lên mặt phẳng đó. + Khoảng cách từ điểm M bất kì đến mặt phẳng (α) có chứa đường cao của hình chóp, hình lăng trụ. + Khoảng cách từ hình chiếu vuông góc A của đỉnh S đến mặt phẳng bên (α). + Khoảng cách từ điểm bất kì đến mặt phẳng bên. 2. Khoảng cách giữa một đường thẳng và một mặt phẳng song song Khoảng cách giữa một đường thẳng và một mặt phẳng song song là khoảng cách từ một điểm bất kì trên đường thẳng này tới mặt phẳng kia. [ads] 3. Khoảng cách giữa hai mặt phẳng song song Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì trên mặt phẳng này tới mặt phẳng kia. 4. Khoảng cách hai đường thẳng chéo nhau a. Khoảng cách hai đường thẳng chéo nhau là độ dài đoạn vuông góc chung  của hai đường thẳng đó. b. Cách tính khoảng cách giữa hai đường thẳng chéo nhau + Cách 1: Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó và mặt phẳng song song với nó, chứa đường thẳng còn lại. + Cách 2: Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó. + Cách 3: Dựng và tính độ dài đoạn vuông góc chung của hai đường thẳng chéo nhau a và b. B. BÀI TẬP MẪU C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

Nguồn: toanmath.com

Đọc Sách

Bài giảng phương pháp trải hình trên mặt phẳng - Trần Thị Hiền
Tài liệu gồm 17 trang, được biên soạn bởi cô giáo Trần Thị Hiền (Tổ Toán trường THPT chuyên Hạ Long, tỉnh Quảng Ninh), hướng dẫn phương pháp trải hình trên mặt phẳng để giải nhanh một số bài toán về hình học không gian. Khi giải một bài toán về tứ diện mà các dữ kiện của nó liên quan đến tổng các góc phẳng hoặc tổng các cạnh … thì việc phẳng hoá tứ diện (tức là trải phẳng tứ diện đó lên một mặt phẳng) sao cho phù hợp sẽ cho ta một lời giải gọn gàng và dễ hiểu. Trong bài viết nhỏ này tôi xin trình bày một số bài toán áp dụng phương pháp này.
Bài tập nâng cao chuyên đề hình học không gian
Tài liệu gồm 94 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tuyển tập 99 bài tập nâng cao chuyên đề hình học không gian, có đáp án và lời giải chi tiết, dành cho giáo viên và học sinh ôn thi học sinh giỏi, học sinh năng khiếu và chuyên Toán. Trích dẫn Bài tập nâng cao chuyên đề hình học không gian : + Cho tứ diện đều ABCD có cạnh bằng 1, hai điểm M và N lần lượt nằm trên các đoạn AB và CD, sao cho BN DN. a) Chứng minh rằng AD BC. Tìm điểm I cách đều 4 đỉnh của tứ diện ABCD b) Khi M, N lần lượt là trung điểm của AB và CD, gọi là mặt phẳng chứa BN và song song với MC. Tính chu vi thiết diện tạo bởi và tứ diện ABCD c) Tìm giá trị lớn nhất và giá trị nhỏ nhất của MN khi M, N thay đổi trên các đoạn AB và C D. + Cho hình hộp ABCD A B C D. Trên cạnh AB lấy điểm M khác A và B.Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng ACD a) Trình bày cách dựng thiết diện của hình hộp và mặt phẳng (P). b) Xác định vị trí của M để thiết diện nói trên có diện tích lớn nhất. + Cho lăng trụ tam giác ABC A B C. Trên tia đối của tia AB lấy điểm M sao cho AM = 1 2 AB. Gọi E là trung điểm của CA. a) Xác định thiết diện của lăng trụ cắt bởi mặt phẳng (MEB’) b) Gọi D = BC (MEB’) K = AA’ (MEB’). Tính tỷ số CB CD và AA’.
Chủ đề khối đa diện và thể tích khối đa diện ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 374 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề khối đa diện và thể tích khối đa diện ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Mở đầu về khối đa diện. DẠNG 2 Thể tích khối lăng trụ đứng. DẠNG 3 Thể tích khối chóp có cạnh bên vuông góc với đáy. DẠNG 4 Thể tích khối chóp có mặt bên vuông góc với đáy. DẠNG 5 Thể tích khối chóp đều. DẠNG 6 Thể tích khối tứ diện đặc biệt. DẠNG 7 Tỷ số thể tích. DẠNG 8 Các bài toán thể tích chọn lọc. DẠNG 9 Bài toán về khoảng cách và góc. DẠNG 10 Cực trị khối đa diện. DẠNG 11 Khối đa diện trong đề thi của Bộ Giáo dục và Đào tạo.
Bài toán cực trị hình học không gian
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán cực trị hình học không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 1. I. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI 1. PHƯƠNG PHÁP GIẢI Áp dụng các phương pháp tính thể tích thông qua tam giác vuông; các loại góc và khoảng cách trong không gian cũng như các công thức tính thể tích khối chóp, khối lăng trụ. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức chứa biến. + Cách 1. Áp dụng bất đẳng thức AM – GM cho các số thực dương. + Cách 2. Khảo sát hàm số f(x) trên khoảng xác định (đạo hàm – lập bảng biến thiên). 2. CÁC VÍ DỤ MINH HỌA II. BÀI TẬP TỰ LUYỆN