Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm, tích phân và ứng dụng - Nguyễn Trọng

Tài liệu gồm 36 trang, được biên soạn bởi thầy giáo Nguyễn Trọng, tóm tắt lý thuyết, ví dụ minh họa và bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng thuộc chương trình Giải tích 12 chương 3. Mục lục chuyên đề nguyên hàm, tích phân và ứng dụng – Nguyễn Trọng: Bài 1 . Nguyên hàm. + Dạng 1. Định nghĩa, tính chất và nguyên hàm cơ bản. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 2. Phương pháp đổi biến. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 3. Nguyên hàm từng phần. a. Ví dụ minh họa. b. Bài tập áp dụng. Bài 2 . Tích phân. + Dạng 1. Tích phân dùng định nghĩa, tính chất. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 2. Tích phân đổi biến số. 1. Đổi biến số dạng 1. a. Ví dụ minh họa. b. Bài tập áp dụng. 2. Đổi biến số dạng 2. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 3. Tích phân từng phần. 1. Dạng 1. $\int_\alpha ^\beta f \left( x \right)\left[ {\begin{array}{*{20}{l}} {\sin ax}\\ {\cos ax}\\ {{e^{ax}}} \end{array}} \right]dx$. a. Ví dụ minh họa. b. Bài tập áp dụng. 2. Dạng 2. $\int_a^\beta f \left( x \right)\ln \left( {ax} \right)dx$. a. Ví dụ minh họa. b. Bài tập áp dụng. 3. Dạng 3. $\int_\alpha ^\beta {{e^{ax}}} \left[ {\begin{array}{*{20}{l}} {\sin ax}\\ {\cos ax} \end{array}} \right]dx$. a. Ví dụ minh họa. b. Bài tập áp dụng. Bài 3 . Ứng dụng của tích phân trong hình học. + Dạng 1. Ứng dụng của tích phân tính diện tích hình phẳng. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 2. Ứng dụng của tích phân tính thể tích. a. Ví dụ minh họa. b. Bài tập áp dụng.

Nguồn: toanmath.com

Đọc Sách

Tài liệu chuyên đề nguyên hàm và một số phương pháp tìm nguyên hàm
Tài liệu gồm 159 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề nguyên hàm và một số phương pháp tìm nguyên hàm, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 1 . NGUYÊN HÀM. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Phương pháp đổi biến số. + Dạng 2. Phương pháp nguyên hàm từng phần. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Hệ thống bài tập trắc nghiệm. + Dạng 1. Nguyên hàm cơ bản. + Dạng 2. Tìm nguyên hàm bằng phương pháp đổi biến số. + Dạng 3. Nguyên hàm của hàm số hữu tỉ. + Dạng 4. Phương pháp nguyên hàm từng phần. 3. Bài tập trắc nghiệm mức độ vận dụng – vận dụng cao (VD – VDC). + Dạng 1. Bài toán tích phân liên quan đến đẳng thức: u(x).f'(x) + u'(x).f(x) = h(x). + Dạng 2. Bài toán tích phân liên quan đến biểu thức: f'(x) + f(x) = h(x). + Dạng 3. Bài toán tích phân liên quan đến biểu thức: f'(x) – f(x) = h(x). + Dạng 4. Bài toán tích phân liên quan đến biểu thức: f'(x) + p(x).f(x) = h(x). + Dạng 5. Bài toán tích phân liên quan đến biểu thức: f'(x) + p(x).f(x) = 0. + Dạng 6. Bài toán tích phân liên quan đến biểu thức: f'(x) + p(x).[f(x)]^n = 0.
Ngân hàng câu hỏi ứng dụng tích phân để tính diện tích hình phẳng
Tài liệu gồm 48 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (Giáo viên Toán trường THPT Đặng Huy Trứ & Admin CLB Giáo Viên Trẻ TP Huế), tuyển chọn 50 bài toán trắc nghiệm liên quan đến ứng dụng tích phân để tính diện tích hình phẳng, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3 và luyện thi THPT Quốc gia môn Toán. Trích dẫn Ngân hàng câu hỏi ứng dụng tích phân để tính diện tích hình phẳng : + Cho đồ thị hàm số y f x và y g x như hình vẽ bên dưới: Biết đồ thị của hàm số y f x là một Parabol đỉnh I có tung độ bằng 1 2 và y g x là một hàm số bậc ba. Hoành độ giao điểm của hai đồ thị là 1 2 3 x x x thỏa mãn 1 2 3 x x x 6. Diện tích hình phẳng giới hạn bởi 2 đồ thị hàm số y f x và y g x gần nhất với giá trị nào dưới đây? + Cho hàm số 4 2 y f x ax bx c có đồ thị C và cắt trục hoành tại điểm có hoành độ bằng 1. Tiếp tuyến d tại điểm có hoành độ x 1 của C cắt C tại 2 điểm khác có hoành độ lần lượt là 0 và 2. Gọi 1 2 S S là diện tích các phần hình phẳng giới hạn bởi d và C (với 2 S là diện tích phần hình phẳng nằm bên phải trục Oy). Tỷ số 1 2 S S bằng? + Trong đợt hội trại “Khi tôi 18” được tổ chức tại trường THPT X, Đoàn trường có thực hiện một dự án ảnh trưng bày trên một pano có dạng parabol như hình vẽ. Biết rằng Đoàn trường sẽ yêu cầu các lớp gửi hình dự thi và dán lên khu vực hình chữ nhật ABCD phần còn lại sẽ được trang trí hoa văn cho phù hợp. Chi phí dán hoa văn là 200.000 đồng cho một 2 m bảng. Hỏi chi phí thấp nhất cho việc hoàn tất hoa văn trên pano sẽ là bao nhiêu (làm tròn đến hàng nghìn)?
Chuyên đề cơ bản ứng dụng tích phân trong hình học ôn thi TN THPT môn Toán
Tài liệu gồm 44 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (giáo viên Toán trường THPT Đặng Huy Trứ, tỉnh Thừa Thiên Huế), hướng dẫn giải các dạng toán cơ bản chuyên đề ứng dụng tích phân trong hình học trong chương trình môn Toán lớp 12, hướng đến kỳ thi tốt nghiệp THPT môn Toán; tài liệu phù hợp với các em học sinh lớp 12 mất gốc Toán. Chủ đề : ỨNG DỤNG TÍCH PHÂN TRONG HÌNH HỌC: TÍNH DIỆN TÍCH HÌNH PHẲNG. I. TÓM TẮT LÝ THUYẾT. Bài toán 1: Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số f x liên tục trên đoạn a b trục hoành và hai đường thẳng x a x b được tính theo công thức: d b a S f x x (1). Bài toán 2: Diện tích S của hình phẳng giới hạn bởi các đồ thị của hàm số f x g x liên tục trên a b và hai đường thẳng x a x b được tính theo công thức: d b a S f x g x x (2). II. BÀI TẬP TRẮC NGHIỆM MINH HỌA. III. LỜI GIẢI CHI TIẾT. Chủ đề : ỨNG DỤNG TÍCH PHÂN TRONG HÌNH HỌC: TÍNH THỂ TÍCH KHỐI TRÒN XOAY. I. TÓM TẮT LÝ THUYẾT. Một hình phẳng quay quanh một trục nào đó tạo nên một khối tròn xoay. Dạng 1: (Hình phẳng quay quanh Ox) Cho hình phẳng được giới hạn bởi đồ thị hàm số y f x liên tục trên a b trục Ox và hai đường thẳng x a x b quanh trục Ox ta được khối tròn xoay có thể tích là: d 2 b x a V f x x (3). Dạng 2: Thể tích khối tròn xoay có được khi quay nhiều đồ thị hàm số quanh một trục. Ta tiến hành chia phần thể tích V thành các phần thể tích thành phần 1 2 V V mà mỗi phần được tính bằng các công thức đã cho. II. BÀI TẬP TRẮC NGHIỆM MINH HỌA. III. LỜI GIẢI CHI TIẾT.
Chuyên đề các dạng tích phân hàm ẩn điển hình mức độ VD - VDC
Tài liệu gồm 84 trang, được biên soạn bởi thầy giáo Đặng Việt Đông (giáo viên Toán trường THPT Nho Quan A, tỉnh Ninh Bình), hướng dẫn phương pháp giải các dạng bài tập tích phân hàm ẩn điển hình mức độ vận dụng và vận dụng cao (VD – VDC), giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3: Nguyên Hàm – Tích Phân Và Ứng Dụng. Dạng 1 . Áp dụng các quy tắc và đạo hàm của hàm số hợp trang. + Quy tắc đạo hàm tích 3. + Quy tắc đạo hàm thương 7. + Áp dụng công thức đạo hàm của hàm chứa căn 15. + Áp dụng công thức đạo hàm của hàm mũ 18. + Áp dụng công thức đạo hàm của hàm lôgarit 19. + Áp dụng các công thức đạo hàm khác 21. Dạng 2 . Phương pháp đổi biến 22. + Tích phân hàm ẩn đổi biến dạng 1 22. + Tích phân hàm ẩn đổi biến dạng 2 28. + Tích phân hàm ẩn đổi biến dạng 3 39. + Tích phân hàm ẩn đổi biến dạng 4 49. + Tích phân hàm ẩn đổi biến dạng 5 51. + Tích phân hàm ẩn đổi biến dạng 6 53. Dạng 3 . Phương pháp từng phần 55. + Trường hợp riêng 68. Dạng 4 . Phương trình vi phân tuyến tính cấp 1 78.