Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các chuyên đề học tập môn Toán 7 phần Hình học

Tài liệu gồm 469 trang, trình bày lý thuyết trọng tâm và phương pháp giải các dạng bài tập môn Toán 7 phần Hình học. Hình học 7 – Chuyên đề 1. Góc ở vị trí đặc biệt. Hình học 7 – Chuyên đề 2. Hai đường thẳng song song. Hình học 7 – Chuyên đề 3. Tiên đề Ơ-clit. Hình học 7 – Chuyên đề 4. Định lí, chứng minh định lí. Hình học 7 – Chuyên đề 5. Tổng các góc của một tam giác. Hình học 7 – Chuyên đề 6. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác. Hình học 7 – Chuyên đề 7. Trường hợp bằng nhau thứ hai và thứ ba của tam giác. Hình học 7 – Chuyên đề 8. Các trường hợp bằng nhau của tam giác vuông. Hình học 7 – Chuyên đề 9.1. Tam giác cân. Đường trung trực của đoạn thẳng. Hình học 7 – Chuyên đề 9.2. Tam giác cân. Đường trung trực của đoạn thẳng. Hình học 7 – Chuyên đề 10. Quan hệ giữa góc và cạnh đối diện trong một tam giác. Hình học 7 – Chuyên đề 11. Quan hệ giữa đường vuông góc và đường xiên. Hình học 7 – Chuyên đề 12. Quan hệ giữa ba cạnh của một tam giác. Hình học 7 – Chuyên đề 13.1. Sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác. Hình học 7 – Chuyên đề 13.2. Sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác. Hình học 7 – Chuyên đề 14.1. Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác. Hình học 7 – Chuyên đề 14.2. Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác. Hình học 7 – Chuyên đề 15. Hình hộp chữ nhật và hình lập phương. Hình học 7 – Chuyên đề 16. Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Trình bày được định lí về quan hệ giữa góc và cạnh đối diện trong một tam giác. + Áp dụng được định lí về quan hệ giữa góc và cạnh đối diện trong một tam giác để so sánh độ dài các cạnh, số đo góc của tam giác đó. Kĩ năng: + Biết vận dụng các định lí để giải quyết bài toán. + Vận dụng vẽ hình theo đúng yêu cầu bài toán, nhận biết được các tính chất qua hình vẽ. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: So sánh hai góc trong một tam giác. + Để so sánh hai góc trong một tam giác, ta so sánh hai cạnh đối diện với hai góc đó. + Sử dụng định lí: “Trong một tam giác, góc có cạnh đối diện lớn hơn thì lớn hơn”. Dạng 2: So sánh hai cạnh trong một tam giác. + Để so sánh hai cạnh trong một tam giác, ta so sánh hai góc đối diện với hai cạnh đó. + Sử dụng định lí: “Trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn”.
Chuyên đề các trường hợp bằng nhau của tam giác vuông
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề các trường hợp bằng nhau của tam giác vuông, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 2: Tam giác. Mục tiêu : Kiến thức: + Nắm được các trường hợp bằng nhau của tam giác vuông: 4 trường hợp. + Vận dụng định lí Py-ta-go để chứng minh trường hợp cạnh huyền – cạnh góc vuông. Kĩ năng: + Vận dụng các trường hợp bằng nhau của tam giác vuông để phát hiện và chứng minh hai tam giác vuông bằng nhau. + Chứng minh được hai đoạn thẳng bằng nhau, hai góc bằng nhau. I. LÍ THUYẾT TRỌNG TÂM + Trường hợp 1. Cạnh góc vuông – cạnh góc vuông: Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. + Trường hợp 2. Cạnh góc vuông – góc nhọn kề: Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. + Trường hợp 3. Cạnh huyền – góc nhọn: Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. + Trường hợp 4. Cạnh huyền – cạnh góc vuông: Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. II. CÁC DẠNG BÀI TẬP Dạng 1: Chứng minh hai tam giác vuông bằng nhau. Dạng 2: Chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau.
Chuyên đề định lí Py-ta-go
Tài liệu gồm 08 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề định lí Py-ta-go, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 2: Tam giác. Mục tiêu : Kiến thức: + Nắm được nội dung định lí Py-ta-go và định lí Py-ta-go đảo. Kĩ năng: + Vận dụng định lí Py-ta-go để tính độ dài cạnh thứ ba khi biết độ dài hai cạnh của tam giác vuông. + Vận dụng định lí Py-ta-go đảo để chứng minh góc vuông hoặc tam giác vuông. + Áp dụng định lí Py-ta-go vào các bài toán trong thực tiễn. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Tính độ dài một cạnh của tam giác vuông. Dạng 2: Sử dụng định lý Py-ta-go đảo để chứng minh tam giác vuông.
Chuyên đề tam giác cân
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tam giác cân, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 2: Tam giác. Mục tiêu : Kiến thức: + Nắm được định nghĩa về tam giác cân, tam giác vuông cân, tam giác đều. + Nắm được các tính chất và dấu hiệu nhận biết của tam giác cân, tam giác đều. Kĩ năng: + Biết vẽ một tam giác cân, tam giác vuông cân và tam giác đều. + Nhận biết và chứng minh được một tam giác là tam giác cân, tam giác vuông cân và tam giác đều. + Vận dụng các tính chất của tam giác cân, tam giác vuông cân và tam giác đều để tính số đo góc, chứng minh các góc hay các cạnh bằng nhau. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Nhận biết tam giác cân, tam giác đều. Dạng 2: Tính số đo góc, chứng minh các góc bằng nhau. Dạng 3: Chứng minh đoạn thẳng bằng nhau. Dạng 4: Các bài toán tổng hợp.