Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

10 đề ôn tập cuối học kì 2 Toán 10 Kết Nối Tri Thức Với Cuộc Sống (70% TN + 30% TL)

Tài liệu gồm 141 trang, tuyển tập 10 đề ôn tập kiểm tra cuối học kì 2 môn Toán 10 theo chương trình SGK Toán 10 Kết Nối Tri Thức Với Cuộc Sống; các đề được biên soạn theo hình thức 70% trắc nghiệm kết hợp 30% tự luận (theo điểm số), phần trắc nghiệm gồm 35 câu, phần tự luận gồm 04 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. MA TRẬN ĐỀ KIỂM TRA CUỐI HỌC KÌ 2 MÔN TOÁN LỚP 10 BỘ SÁCH KNTTVCS: 1 Bài 15: Hàm số (4 tiết). 2 Bài 16: Hàm số bậc hai (3 tiết). 3 Bài 17: Dấu của tam thức bậc hai (3 tiết). 4 Bài 18: Phương trình quy về phương trình bậc hai (2 tiết). 5 Bài 19: Phương trình đường thẳng (2 tiết). 6 Bài 20: Vị trí tương đối, góc và khoảng cách (3 tiết). 7 Bài 21 Đường tròn trong mặt phẳng tọa độ (2 tiết). 8 Bài 22: Ba đường conic (4 tiết). 9 Bài 23: Quy tắc đếm (4 tiết). 10 Bài 24: Hoán vị, chỉnh hợp và tổ hợp (4 tiết). 11 Bài 25: Nhị thức Newton (2 tiết). 12 Bài 26: Biến cố và định nghĩa cổ điển của xác suất (5 tiết). Phần tự luận: Để được phong phú mình để nhiều lựa chọn. – Hai câu vận dụng mỗi câu 1,0 điểm ta chọn ở 1* sao cho 1 câu Đại Số và 1 câu Hình học. – Hai câu vận dụng cao mỗi câu 0,5 điểm ta chọn ở 1** sao cho 1 câu Đại Số và 1 câu Hình học.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Thủ Khoa Huân TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Thủ Khoa Huân TP HCM Bản PDF Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, Sytu giới thiệu đến các em đề thi học kì 2 Toán lớp 10 năm học 2019 – 2020 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán lớp 10 năm 2019 – 2020 trường THPT Thủ Khoa Huân – TP HCM : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm A(−1; 3), B(5; −5) và đường thẳng d : 2x + 3y − 1 = 0. a. Viết phương trình tham số và phương trình tổng quát của đường thẳng AB. b. Viết phương trình đường tròn tâm A và tiếp xúc với đường thẳng d. c. Viết phương trình đường tròn (C) đi qua các điểm A, B và có tâm thuộc đường thẳng d. + Trên đường tròn lượng giác, điểm M thỏa mãn (Ox;OM) = 700◦ thì nằm ở góc phần tư thứ? + Gọi ∆ là đường thẳng đi qua điểm M(−1; 3) và nhận −→u = (3; 1) làm vectơ chỉ phương. Trong các phương trình sau, phương trình tham số của đường thẳng ∆ là?
Đề thi học kì 2 (HK2) lớp 10 môn Toán năm học 2019 2020 trường THPT Ngô Gia Tự Đắk Lắk
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm học 2019 2020 trường THPT Ngô Gia Tự Đắk Lắk Bản PDF Ngày … tháng 06 năm 2020, trường THPT Ngô Gia Tự, huyện Ea Kar, tỉnh Đắk Lắk tổ chức kỳ thi kiểm tra khảo sát chất lượng học kỳ 2 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HK2 Toán lớp 10 năm học 2019 – 2020 trường THPT Ngô Gia Tự – Đắk Lắk mã đề 182 gồm có 03 trang với 20 câu trắc nghiệm (chiếm 04 điểm) và 06 câu tự luận (chiếm 06 điểm), thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 182, 183, 215, 216. Trích dẫn đề thi HK2 Toán lớp 10 năm học 2019 – 2020 trường THPT Ngô Gia Tự – Đắk Lắk : + Trong các phương trình sau, có một phương trình là phương trình chính tắc của một elip. Hãy cho biết đó là phương trình nào? + Trong mặt phẳng toạ độ Oxy, cho hai điểm A(-2;6), B(1;2) và đường tròn (T) có phương trình (x – 3)^2 + (y + 1)^2 = 5. a) Viết phương trình đường tròn (C) có tâm A và đi qua B. b) Gọi d là tiếp tuyến của đường tròn (T) tại điểm M (4;-3) thuộc (T). Viết phương trình tổng quát của d. + Trong mặt phẳng toạ độ Oxy, cho đường tròn (C) có phương trình (x – 1)^2 + y^2 = 2 và đường thẳng ∆: x – y + m = 0. Tìm m để trên ∆ có duy nhất một điểm M mà từ đó có thể kẻ được hai tiếp tuyến MA, MB tới (C) (với A, B là các tiếp điểm) sao cho tam giác MAB đều. File WORD (dành cho quý thầy, cô):
Đề thi học kì 2 (HK2) lớp 10 môn Toán năm học 2019 2020 trường THPT Gia Định TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm học 2019 2020 trường THPT Gia Định TP HCM Bản PDF Ngày … tháng 06 năm 2020, trường THPT Gia Định, quận Bình Thạnh, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng học kỳ 2 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HK2 Toán lớp 10 năm học 2019 – 2020 trường THPT Gia Định – TP HCM có dạng tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài 60 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HK2 Toán lớp 10 năm học 2019 – 2020 trường THPT Gia Định – TP HCM : + Trong mặt phẳng với hệ trục toạ độ Oxy, cho đường tròn (C): x^2 + y^2 – 4x + 6y + 3 = 0. a) Tìm tọa độ tâm và tính bán kính của đường tròn (C). b) Viết phương trình tiếp tuyến (d) với đường tròn (C), biết tiếp tuyến (d) song song với đường thẳng delta: 3x – y + 1 = 0. Tìm tọa độ tiếp điểm. [ads] + Trong mặt phẳng với hệ trục toạ độ Oxy, cho (E): 16x^2 + 25y^2 = 400. Tìm tọa độ các tiêu điểm F1 và F2; đỉnh, tính tiêu cự; độ dài các trục của (E). + Cho cosa = 4/5 với 0 độ < a < 90 độ và cosb = -12/13. Tính các giá trị: sina; tana; cot a và tính giá trị biểu thức: A = cos(a + b).cos(a – b).
Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Marie Curie TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Marie Curie TP HCM Bản PDF Ngày … tháng 06 năm 2020, trường THPT Marie Curie, quận 3, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra học kì 2 môn Toán lớp 10 năm học 2019 – 2020. Đề thi học kì 2 Toán lớp 10 năm 2019 – 2020 trường THPT Marie Curie – TP HCM có dạng đề tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài thi là 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 10 năm 2019 – 2020 trường THPT Marie Curie – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(2;-1), B(-1;2) và C(5;5). a) Viết phương trình tổng quát của đường thẳng d qua A và vuông góc BC. b) Viết phương trình đường tròn (C) có tâm là trọng tâm của tam giác ABC và (C) qua gốc tọa độ. c) Tìm điểm K trên đường thẳng d1: 2x – y + 1 = 0 cách trục hoành một đoạn bằng 5, biết rằng điểm K có tung độ dương. [ads] + Cho phương trình x^2 + (m + 2)x – m – 3 = 0 (1). Tìm tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt x1 và x2 sao cho x1^2 + x2^2 < 3 – 2x1x2.