Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề quan hệ giữa ba cạnh của một tam giác lớp 7 môn Toán

Nội dung Chuyên đề quan hệ giữa ba cạnh của một tam giác lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề quan hệ giữa ba cạnh của một tam giác lớp 7 môn ToánPHẦN I: TÓM TẮT LÍ THUYẾTPHẦN II: CÁC DẠNG BÀIDạng 1: Khẳng định có tồn tại hay không một tam giác biết độ dài ba cạnh.Dạng 2: Chứng minh các bất đẳng thức về độ dài.PHẦN III: BÀI TẬP TỰ LUYỆN Chuyên đề quan hệ giữa ba cạnh của một tam giác lớp 7 môn Toán Để giúp học sinh lớp 7 nắm vững kiến thức về quan hệ giữa ba cạnh của một tam giác, tài liệu này bao gồm 18 trang với nội dung chính được chia thành ba phần chính. PHẦN I: TÓM TẮT LÍ THUYẾT Phần này tóm tắt những điều cơ bản về quan hệ giữa độ dài ba cạnh của một tam giác. Học sinh sẽ biết được điều kiện cần và đủ để tồn tại một tam giác dựa trên độ dài ba cạnh. PHẦN II: CÁC DẠNG BÀI Phần này là nơi học sinh sẽ học cách giải các dạng bài tập liên quan đến quan hệ giữa ba cạnh của tam giác. Điều này bao gồm chứng minh các bất đẳng thức về độ dài các cạnh và cách áp dụng bất đẳng thức tam giác. Dạng 1: Khẳng định có tồn tại hay không một tam giác biết độ dài ba cạnh. Trong dạng bài này, học sinh sẽ học được cách xác định xem có thể tạo thành một tam giác từ ba độ dài cạnh đã cho. Điều kiện cần và đủ để tồn tại một tam giác sẽ được giải thích rõ ràng. Dạng 2: Chứng minh các bất đẳng thức về độ dài. Đây là phần mở rộng kiến thức về bất đẳng thức tam giác. Học sinh sẽ được hướng dẫn cách chứng minh các bất đẳng thức và biến đổi chúng để giải quyết các bài tập. PHẦN III: BÀI TẬP TỰ LUYỆN Để giúp học sinh nắm chắc kiến thức, phần này chứa các bài tập tự luyện mà học sinh có thể làm để ôn tập và củng cố kiến thức về quan hệ giữa ba cạnh của tam giác. Qua tài liệu này, hy vọng học sinh sẽ hiểu rõ hơn về quan hệ giữa ba cạnh của tam giác và tự tin trong việc giải các bài tập liên quan trong chương trình Toán lớp 7.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề quan hệ giữa ba cạnh của một tam giác Toán 7
Tài liệu gồm 18 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa ba cạnh của một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Khẳng định có tồn tại hay không một tam giác biết độ dài ba cạnh. + Tồn tại một tam giác có độ dài ba cạnh là abc nếu: a b c b a c c a b hoặc b c a b c. + Trong trường hợp xác định được a là số lớn nhất trong ba số abc thì điều kiện để tồn tại tam giác chỉ cần: a b c. Dạng 2 . Chứng minh các bất đẳng thức về độ dài. Sử dụng bất đẳng thức tam giác và các biến đổi về bất đẳng thức tam giác. + Cộng cùng một số vào hai vế của bất đẳng thức: a b a c b c. + Cộng từng vế hai bất đẳng thức cùng chiều: a b a c b. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề quan hệ giữa đường vuông góc và đường xiên Toán 7
Tài liệu gồm 20 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa đường vuông góc và đường xiên trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Nhận biết đường vuông góc, đường xiên. Tìm khoảng cách của một điểm đến một đường thẳng. – Dựa vào khái niệm đường vuông góc, đường xiên để nhận biết các loại đường đó. – Tính khoảng cách từ một điểm đến một đường thẳng chính là tính độ dài đường vuông góc kẻ từ điểm đó đến đường thẳng. Dạng 2 . Quan hệ giữa đường vuông góc và đường xiên. – Sử dụng định lý đường vuông góc ngắn hơn đường xiên (từ một điểm đến cùng một đường thẳng). PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7
Tài liệu gồm 20 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. So sánh các góc trong một tam giác. + TH1: Nếu các góc cần so sánh nằm trong cùng một tam giác thì ta áp dụng định lí 1: So sánh các cạnh đối diện với các góc đó. + TH2: Nếu các góc cần so sánh không cùng nằm trong cùng một tam giác thì ta dùng góc trung gian để so sánh. Dạng 2. So sánh các cạnh trong một tam giác. + TH1: Nếu các cạnh cần so sánh nằm trong cùng một tam giác thì ta áp dụng định lí 2: So sánh các góc đối diện với các cạnh đó. + TH2: Nếu các góc cần so sánh không cùng nằm trong cùng một tam giác thì ta dùng góc trung gian để so sánh. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề tam giác cân, đường trung trực của đoạn thẳng Toán 7
Tài liệu gồm 26 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề tam giác cân, đường trung trực của đoạn thẳng trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Chứng minh tam giác cân, tam giác đều và sử dụng tính chất của tam giác cân, tam giác đều để giải quyết bài toán. Dựa và dấu hiệu nhận biết của tam giác cân, tam giác đều. Dựa vào tính chất của tam giác cân, tam giác đều để tính số đo góc hoặc chứng minh các góc bằng nhau, các cạnh bằng nhau. Dạng 2 . Vận dụng tính chất của đường trung trực để giải quyết bài toán. Sử dụng tính chất: Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó. Dạng 3 . Chứng minh một điểm thuộc đường trung trực. Chứng minh một đường thẳng là đường trung trực của một đoạn thẳng. + Để chứng minh điểm M thuộc trung trực của đoạn thẳng AB, ta dùng nhận xét: Điểm cách đều hai mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó. + Để chứng minh đường thẳng d là đường trung trực của đoạn thẳng AB, ta chứng minh d chứa hai điểm phân biệt cách đều A và B hoặc dùng định nghĩa đường trung trực. PHẦN III . BÀI TẬP TỰ LUYỆN.