Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Sơn La

Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Sơn La tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Sơn La. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Sơn La, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Sơn La : + Trong kỳ thi tuyển sinh vào lớp 10 năm học 2019 – 2020, số thí sinh vào trường THPT chuyên bằng 2/3, số thí sinh thi vào trường PTDT Nội trú. Biết rằng tổng số phòng thi của cả hai trường là 80 phòng thi và mỗi phòng thi có đúng 24 thí sinh. Hỏi số thí sinh vào mỗi trường bằng bao nhiêu? [ads] + Cho đường tròn (O) đường kính AB = 2R và C là một điểm nằm trên đường tròn sao cho CA > CB. Gọi I là trung điểm của OA, vẽ đường thẳng d vuông góc với AB tại I, d cắt tia BC tại M và cắt đoạn AC tại P, AM cắt đường tròn (O) tại điểm thứ hai K. a) Chứng minh tứ giác BCPI nội tiếp được trong một đường tròn. b) Chứng minh ba điểm B, P, K thẳng hàng. c) Các tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại Q, biết BC = R. Tính độ dài BK và diện tích tứ giác QAIM theo R. + Cho parabol (P):y = x^2 và đường thẳng y = (2m – 1)x + m^2 + 2m (m là tham số, m thuộc R). a) Xác định tất cả các giá trị của m để đường thẳng (d) đi qua điểm I(1;3). b) Tìm m để parabol (P) cắt đường thẳng (d) tại hai điểm phân biệt A, B. Gọi x1, x2 là hoành độ hai điểm A, B; tìm m sao cho x1^2 + x2^2 + 6x1x2 = 2020.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử vào môn Toán năm 2021 2022 trường Lương Thế Vinh Hà Nội
Nội dung Đề thi thử vào môn Toán năm 2021 2022 trường Lương Thế Vinh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào lớp 10 môn Toán năm 2021 - 2022 trường Lương Thế Vinh - Hà Nội Đề thi thử vào lớp 10 môn Toán năm 2021 - 2022 trường Lương Thế Vinh - Hà Nội Đề thi thử vào lớp 10 môn Toán năm 2021 - 2022 trường Lương Thế Vinh - Hà Nội bao gồm 01 trang với 05 bài toán tự luận. Thời gian làm bài là 120 phút, kỳ thi sẽ diễn ra vào ngày 04 tháng 04 năm 2021. Đề thi được biên soạn đặc biệt cho các học sinh chuẩn bị thi vào lớp 10 tại trường này, giúp họ ôn tập và rèn luyện kỹ năng giải bài toán trong môi trường thi cử thật.
Đề thi thử vào môn Toán lần 1 năm 2021 trường chuyên ĐHSP Hà Nội
Nội dung Đề thi thử vào môn Toán lần 1 năm 2021 trường chuyên ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào lớp 10 môn Toán lần 1 năm 2021 trường chuyên ĐHSP Hà Nội Đề thi thử vào lớp 10 môn Toán lần 1 năm 2021 trường chuyên ĐHSP Hà Nội Đề thi thử vào lớp 10 môn Toán lần 1 năm 2021 trường chuyên ĐHSP Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Đề thi được thiết kế để kiểm tra kỹ năng và hiểu biết của học sinh trong môn Toán, từ đó giúp họ chuẩn bị tốt nhất cho kỳ thi sắp tới.
Đề thi thử Toán vào năm 2021 2022 trường THPT Hàm Rồng Thanh Hóa
Nội dung Đề thi thử Toán vào năm 2021 2022 trường THPT Hàm Rồng Thanh Hóa Bản PDF - Nội dung bài viết Đề thi thử Toán vào lớp 10 năm 2021 - 2022 trường THPT Hàm Rồng - Thanh Hóa Đề thi thử Toán vào lớp 10 năm 2021 - 2022 trường THPT Hàm Rồng - Thanh Hóa Đề thi thử Toán vào lớp 10 năm 2021 - 2022 trường THPT Hàm Rồng - Thanh Hóa được thiết kế với 01 trang bao gồm 05 bài toán tự luận. Thời gian làm bài là 120 phút. Kỳ thi sẽ diễn ra vào ngày 18 tháng 04 năm 2021. Đề thi cung cấp lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một đề thi thử Toán vào lớp 10 năm 2021 - 2022 trường THPT Hàm Rồng - Thanh Hóa: + Cho đường tròn O đường kính AB R = 2. Gọi I là trung điểm của AO và d là đường thẳng vuông góc với AB tại I. Gọi M là một điểm tùy ý trên d sao cho M nằm ngoài O, MB cắt O tại điểm N, NA cắt O tại điểm P. Đường thẳng AN cắt d tại H. 1. Chứng minh rằng: BNHI là tứ giác nội tiếp. 2. Chứng minh rằng: HP = HB = HA = HN. 3. Giả sử MI = R/2. Tính IH theo R. + Cho a là số thực dương. Tìm giá trị nhỏ nhất của biểu thức: T. + Tìm m để đường thẳng 2y - m = x - m/2 + 1 song song với đường thẳng y = x/2 + 3. Đề thi thử Toán vào lớp 10 năm 2021 - 2022 trường THPT Hàm Rồng - Thanh Hóa mang đến những bài toán thú vị, phù hợp để học sinh rèn luyện và nâng cao kiến thức Toán của mình.
Đề thi thử Toán vào năm 2021 2022 trường THCS Nghinh Xuyên Phú Thọ
Nội dung Đề thi thử Toán vào năm 2021 2022 trường THCS Nghinh Xuyên Phú Thọ Bản PDF Đề thi thử Toán vào năm 2021 - 2022 trường THCS Nghinh Xuyên - Phú Thọ Đề thi thử Toán vào lớp 10 năm 2021 – 2022 trường THCS Nghinh Xuyên – Phú Thọ gồm 02 trang với 10 câu trắc nghiệm và 04 câu tự luận, thời gian làm bài 120 phút. Đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề thi thử Toán vào lớp 10 năm 2021 – 2022 trường THCS Nghinh Xuyên – Phú Thọ: Số tiền phải trả để mua x gói kẹo được cho bởi công thức y = x(54000 + 6000) (đồng). Tính số tiền phải trả để mua 5 gói kẹo. Nếu có 500,000 đồng thì có thể mua tối đa bao nhiêu gói kẹo? Cho hệ phương trình 3x + 2y = 9 và 5x - my = 5 có nghiệm (x;y). Tìm m để biểu thức C = xy/(x+1) đạt giá trị lớn nhất. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn O bán kính R. Kẻ đường cao AH, BK của tam giác ABC, các tia AH, BK lần lượt cắt đường tròn O tại các điểm thứ hai là D, E. Chứng minh tứ giác ABHK nội tiếp đường tròn. Xác định tâm đường tròn đó. Chứng minh rằng HK // DE. Cho O và dây AB cố định, điểm C di chuyển trên đường tròn O sao cho ABC có ba góc nhọn. Chứng minh rằng độ dài bán kính đường tròn ngoại tiếp CHK không đổi. Đề thi trên là một bài thi thử mô phỏng cụ thể như một đề thi chính thức. Học sinh sẽ được kiểm tra kỹ năng giải quyết vấn đề, tư duy logic và sự hiểu biết sâu rộng về kiến thức Toán học. Chúc các em học sinh có kỳ thi thử thành công và tự tin chuẩn bị cho kỳ thi chính thức sắp tới!