Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ đề tham khảo thi tốt nghiệp THPT năm 2020 môn Toán sở GDĐT Kon Tum

Nhằm giúp học sinh khối 12 chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020, sở Giáo dục và Đào tạo tỉnh Kon Tum công bố bộ đề tham khảo thi tốt nghiệp THPT năm 2020 môn Toán. Tài liệu gồm 83 trang, bao gồm 06 đề thi thử tốt nghiệp THPT 2020 môn Toán có cấu trúc bám sát, độ khó tương tự đề minh họa THPT 2020 môn Toán của Bộ GD&ĐT, có đáp án và lời giải chi tiết các câu vận dụng – vận dụng cao. Trích dẫn bộ đề tham khảo thi tốt nghiệp THPT năm 2020 môn Toán sở GD&ĐT Kon Tum : + Cho hai hình vuông ABCD và ABEF có cạnh bằng 1, lần lượt nằm trên hai mặt phẳng vuông góc nhau. Gọi H là điểm sao cho ED = 3EH và S là điểm sao cho HB = 3SH. Thể tích của khối đa diện ABCDSEF bằng a/b với a và b thuộc N* và phân số a/b tối giản, khi đó 2a + b bằng? [ads] + Cho hình trụ có chiều cao bằng 4. Xét hình nón có đáy trùng với đáy hình trụ, đỉnh là tâm của hình tròn đáy hình trụ (tham khảo hình vẽ). Mặt phẳng qua trục cắt hình nón theo thiết diện là tam giác vuông O’AB. Diện tích xung quanh của hình nón bằng? + Cho hàm số y = f(x) liên tục, có đạo hàm trên R và có đồ thị như hình vẽ bên. Gọi P và p lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số g(x) = f(2√2x + √1 – x) + m (với m là tham số thực) trên đoạn [0;1]. Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-10;10) để P > 2p?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GDĐT Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử kỳ thi tốt nghiệp THPT năm 2023 môn Toán sở Giáo dục và Đào tạo tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Năm ngày 30 tháng 03 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GD&ĐT Bắc Ninh : + Các nhà tâm lí học sử dụng mô hình hàm số để mô phỏng quá trình học tập của một học sinh như sau: f(x) = K.(1 – 1/e^vx), trong đó K là tổng số đơn vị kiến thức học sinh phải học, v (kiến thức / ngày) là tốc độ tiếp thu của học sinh, x (ngày) là thời gian học, f(x) là số đơn vị kiến thức đã học được sau x ngày. Giả sử một học sinh cần phải học 35 đơn vị kiến thức. Biết rằng tốc độ tiếp thu của học sinh này là v = 0,28. Hỏi học sinh đó sẽ nhớ được bao nhiêu đơn vị kiến thức sau 7 ngày (kết quả làm tròn đến hàng đơn vị). + Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R3. Hai điểm A và B lần lượt nằm trên hai đường tròn đáy sao cho khoảng cách giữa đường thẳng AB và trục của hình trụ bằng R3/2. Góc giữa đường thẳng AB và trục của hình trụ bằng? + Trong không gian Oxyz, cho mặt cầu (S): (x − 1)2 + (y − 1)2 + (z − 1)2 = 12 và mặt phẳng (a): x − 2y + 2z + 11 = 0. Lấy điểm M tùy ý trên (a). Từ M kẻ các tiếp tuyến MA, MB, MC đến mặt cầu (S) với A, B, C là các tiếp điểm đôi một phân biệt. Khi M thay đổi thì mặt phẳng (ABC) luôn đi qua điểm cố định H (a;b;c). Tổng a + b + c bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GDĐT Bà Rịa - Vũng Tàu
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 1 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; đề thi có đáp án mã đề 132 – 209 – 357 – 485; kỳ thi được diễn ra vào thứ Năm ngày 30 tháng 03 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GD&ĐT Bà Rịa – Vũng Tàu : + Anh Ba đang trên chiếc thuyền tại vị trí A cách bờ sông 2km, anh dự định chèo thuyền vào bờ và tiếp tục chạy bộ theo một đường thẳng để đến một địa điểm B tọa lạc ven bờ sông, B cách vị trí O trên bờ gần với thuyền nhất là 4km(hình vẽ). Biết rằng anh Ba chèo thuyền với vận tốc 6 km h và chạy bộ trên bờ với vận tốc 10 km h. Khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm B là? + Trong không gian Oxyz, cho ba điểm A 1 4 5 B 3 4 0 C 2 1 0 và mặt cầu 2 2 2 S x y z 1 1 3 4 điểm N thay đổi trên mặt cầu S. Gọi M m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 2 2 2 P NA NB NC 3. Giá trị M m bằng? + Cho hình nón đỉnh S, đường cao SO. Gọi A và B là hai điểm thuộc đường tròn đáy hình nón sao cho khoảng cách từ O đến AB bằng a và 0 SAO 30 0 SAB 60. Diện tích xung quanh hình nón bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GDĐT Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp Trung học Phổ thông năm 2023 môn Toán lần 1 sở Giáo dục và Đào tạo tỉnh Bắc Giang; đề thi có đáp án mã đề 101 – 102 – 103 – 104; kỳ thi được diễn ra vào thứ Năm ngày 30 tháng 03 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GD&ĐT Bắc Giang : + Cho khối nón tròn xoay đỉnh S, đáy là đường tròn tâm O, góc ở đỉnh bằng 0 120. Mặt phẳng (Q) thay đổi, đi qua S và cắt khối nón theo thiết diện là tam giác SAB. Biết rằng giá trị lớn nhất diện tích tam giác SAB là 2 2a. Khoảng cách từ O đến mặt phẳng (Q) trong trường hợp diện tích tam giác SAB đạt giá trị lớn nhất là? + Trong tập các số phức, cho phương trình 2 z m z m 2 1 6 2 0 (m tham số thực). Hỏi có tất cả bao nhiêu giá trị nguyên của m để phương trình đã cho có hai nghiệm phân biệt 1 2 z z thỏa mãn 1 2 z z. + Xếp ngẫu nhiên 3 quả cầu màu đỏ có kích thước khác nhau và 3 quả cầu màu xanh giống nhau vào một giá chứa đồ nằm ngang có 7 ô trống, mỗi quả cầu được xếp vào một ô. Tính xác suất để 3 quả cầu màu đỏ xếp cạnh nhau và 3 quả cầu màu xanh xếp cạnh nhau?
Đề thi thử TN THPT 2023 môn Toán cụm trường THPT huyện Nam Trực - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán cụm các trường THPT thuộc huyện Nam Trực, tỉnh Nam Định; đề thi mã đề 501; hình thức trắc nghiệm với 50 câu, thời gian làm bài 90 phút. Trích dẫn Đề thi thử TN THPT 2023 môn Toán cụm trường THPT huyện Nam Trực – Nam Định : + Cho a, b là các số thực dương khác 1, đường thẳng d song song trục hoành cắt trục tung, đồ thị hàm số y = ax, đồ thị hàm số y = bx lần lượt tại H, M, N (như hình bên). Biết HM = 3MN. Mệnh đề nào sau đây đúng? + Trong không gian với hệ trục Oxyz, cho điểm A(2;-2;2) và mặt cầu (S): x2 + y2 + (z + 2)2 = 1. Điểm M di chuyển trên mặt cầu (S) đồng thời thỏa mãn OM.AM = 6. Điểm M luôn thuộc mặt phẳng nào dưới đây? + Cho khối chóp S.ABC có đáy là tam giác vuông cân tại B. Khoảng cách từ A đến mặt phẳng (SBC) bằng a2, SAB = SCB = 90°. Khi độ dài cạnh AB thay đổi, thể tích khối chóp S.ABC có giá trị nhỏ nhất bằng?