Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát tháng 11 lớp 9 môn Toán năm 2019 2020 trường Nam Từ Liêm Hà Nội

Nội dung Đề khảo sát tháng 11 lớp 9 môn Toán năm 2019 2020 trường Nam Từ Liêm Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát tháng 11 lớp 9 môn Toán năm 2019-2020 trường Nam Từ Liêm Hà Nội Đề khảo sát tháng 11 lớp 9 môn Toán năm 2019-2020 trường Nam Từ Liêm Hà Nội Trong tuần vừa qua, trường THCS Nam Từ Liêm - Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán cho học sinh lớp 9 giai đoạn tháng 11 năm học 2019 - 2020. Đây là một cơ hội để học sinh rèn luyện kỹ năng và kiến thức, chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Đề thi khảo sát tháng 11 Toán lớp 9 năm 2019-2020 trường Nam Từ Liêm - Hà Nội bao gồm 5 bài toán tự luận trên 1 trang, thời gian làm bài là 90 phút. Đề thi được soạn theo cấu trúc tương tự như đề thi tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo Hà Nội. Một trong những câu hỏi trong đề khảo sát là: "Một chiếc thuyền đi từ vị trí A bên bờ sông này sang vị trí B bên bờ sông kia. Do dòng nước chảy xiết, thuyền đã đi lệch một góc 20° và đến vị trí C. Khoảng cách giữa hai bờ là 160m. Hỏi khoảng cách BC là bao nhiêu?" Đề cũng đưa ra các bài toán khác về hàm số bậc nhất, đường tròn, hình học,... để kiểm tra kiến thức của học sinh. Qua các bài toán này, học sinh được khám phá, rèn luyện tư duy logic và phân tích, chuẩn bị tốt cho các kỳ thi sắp tới. Chúc các em học tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 lần 1 năm 2023 - 2024 phòng GDĐT Thủy Nguyên - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Thủy Nguyên, thành phố Hải Phòng; đề thi gồm 02 trang với 06 bài toán hình thức tự luận, thời gian làm bài 120 phút. Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2023 – 2024 phòng GD&ĐT Thủy Nguyên – Hải Phòng : + Giá 01 quyển vở là 8 000 (đồng), 01 quyển sách 59 000 (đồng). Nam muốn mua 01 quyển sách và một số quyển vở. Gọi x là số vở Nam mua và y (đồng) là số tiền phải trả (bao gồm tiền mua vở và 1 quyển sách) (x thuộc N*). a. Hãy biểu diễn y theo x. b. Nếu bạn Nam có 119 000 (đồng) để mua 01 quyển sách và vở thì bạn Nam có thể mua được tối đa bao nhiêu quyển vở? + Một vườn trường hình chữ nhật trước đây có chu vi 120m. Nhà trường đã mở rộng chiều dài thêm 5m và chiều rộng thêm 3m, do đó diện tích vườn trường đã tăng thêm 245m2. Tính chiều dài và chiều rộng của vườn lúc đầu. + Một bồn đựng nước có dạng hình hộp chữ nhật có các kích thước cho trên hình. a) Tính diện tích bề mặt của bồn (không tính nắp). b) Một vòi bơm với công suất 120 lít/phút để bơm một lượng nước vào bồn lên độ cao cách nắp bồn là 1,5m thì phải mất bao lâu (bồn không chứa nước)?
Đề kiểm tra Toán 9 năm 2023 - 2024 trường chuyên KHTN - Hà Nội (Vòng 2 - Đợt 1)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra kiến thức môn Toán 9 năm học 2023 – 2024 trường THPT chuyên KHTN, Đại học Khoa học Tự nhiên, thành phố Hà Nội (Vòng 2 – Đợt 1); kỳ thi được diễn ra vào ngày 21 tháng 01 năm 2024. Trích dẫn Đề kiểm tra Toán 9 năm 2023 – 2024 trường chuyên KHTN – Hà Nội (Vòng 2 – Đợt 1) : + Cho tam giác ABC nhọn, đường cao BE, CF cắt nhau tại H (E, F lần lượt nằm trên cạnh CA, AB). Gọi M là trung điểm BC. Gọi K là hình chiếu của H trên AM. 1) Chứng minh rằng bốn điểm B, C, K, H cùng thuộc một đường tròn. 2) Gọi (J) và (L) lần lượt là đường tròn ngoại tiếp các tam giác MBF và MCE. Chứng minh rằng (J) và (L) cùng đi qua K. 3) Gọi P là điểm đối xứng của A qua BC. Chứng minh rằng phân giác các góc BPC và JML đồng quy với JL. + Với x, y, z là những số nguyên dương thỏa mãn x + y + z = 100. Tìm giá trị nhỏ nhất của biểu thức P = x!y!z!.
Đề kiểm tra Toán 9 năm 2023 - 2024 trường chuyên KHTN - Hà Nội (Vòng 1 - Đợt 1)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra kiến thức môn Toán 9 năm học 2023 – 2024 trường THPT chuyên KHTN, Đại học Khoa học Tự nhiên, thành phố Hà Nội (Vòng 1 – Đợt 1); kỳ thi được diễn ra vào ngày 20 tháng 01 năm 2024. Trích dẫn Đề kiểm tra Toán 9 năm 2023 – 2024 trường chuyên KHTN – Hà Nội (Vòng 1 – Đợt 1) : Cho tam giác nhọn ABC nội tiếp trong đường tròn (O). Các điểm E và F lần lượt nằm trên các cạnh CA và AB sao cho EF song song với BC. Các đường thẳng BE và CF theo thứ tự cắt các tiếp tuyến tại C và B của (O) lần lượt tại K và L. 1) Đường thẳng qua B và song song với AC theo thứ tự cắt KC và KA tại X và Y. Chứng minh rằng hai tam giác XBC và BCA đồng dạng. 2) Đường thẳng qua C song song với AB theo thứ tự cắt LB và LA lần lượt tại Z và T. Chứng minh rằng XB AF ZC AE. 3) Đường thẳng qua E song song với AB lần lượt cắt AK và AL tại M và N. Đường thẳng qua F song song với AC lần lượt cắt AK và AL tại P và Q. Chứng minh rằng bốn điểm M, N, P và Q cùng thuộc vào một đường tròn.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát, đánh giá chất lượng giáo dục môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 sở GD&ĐT Ninh Bình : + Cho hàm số y = −x + 3 có đồ thị là đường thẳng (d). a. Xác định hệ số góc và tung độ gốc của đường thẳng (d). b. Vẽ (d) trên hệ trục tọa độ Oxy. Gọi A, B lần lượt là giao điểm của (d) với trục Ox và Oy. Tính diện tích OAB (Đơn vị đo trên các trục tọa độ là cm). + Giá cước taxi của một hãng xe taxi khi quãng đường di chuyển x(km) trong khoảng từ 1km đến 30km được cho bởi công thức: y = 10000 + 13600(x − 1) (đồng). Nếu một hành khách phải trả 350 nghìn đồng thì hành khách đó đã di chuyển bao nhiêu km? + Núi Kỳ Lân cùng với 3 ngọn núi khác được mệnh danh là “Tứ đại danh sơn” của vùng đất Ninh Bình. Sở dĩ núi có tên “Kỳ Lân” vì ngọn núi này có hình đầu con Kỳ Lân nhìn về phía Bắc, sườn núi có chỗ hõm tạo hình giống hàm của con Kỳ Lân, vách núi nhấp nhô, những cây cổ thụ cùng các loại hoa đua nhau rậm rạp tốt tươi tạo thành như bờm của con Kỳ Lân. Một người đứng trên mặt đất, cách Núi Kỳ Lân một khoảng bằng 100m, nhìn thấy ngọn núi với góc nâng 26° so với phương nằm ngang. Biết mắt quan sát của người đó cách mặt đất 1,6 m, hãy tính chiều cao của ngọn núi theo đơn vị m (Kết quả làm tròn đến hàng đơn vị).