Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng hàm số lượng giác và phương trình lượng giác Toán 11 CTST

Tài liệu gồm 196 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm tóm tắt kiến thức cơ bản cần nắm, phân loại và phương pháp giải bài tập chuyên đề hàm số lượng giác và phương trình lượng giác trong chương trình môn Toán 11 Chân Trời Sáng Tạo (CTST). MỤC LỤC : BÀI 1 . GÓC LƯỢNG GIÁC 4. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 4. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 6. Dạng 1. Đơn vị đo độ và rađian 6. 1. Phương pháp 6. 2. Các ví dụ minh họa 6. Dạng 2. Biểu diễn cung lượng giác trên đường tròn lượng giác 6. 1. Phương pháp 6. 2. Các ví dụ minh họa 7. Dạng 3. Độ dài của một cung tròn 8. 1. Phương pháp giải 8. 2. Các ví dụ minh họa 8. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA BÀI TẬP 9. D. BÀI TẬP TRẮC NGHIỆM 15. BÀI 2 . GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC LƯỢNG GIÁC 25. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 25. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 28. Dạng 1. Tính giá trị của góc còn lại hoặc của một biểu thức lượng giác khi biết một giá trị lượng giác 28. 1. Phương pháp giải 28. 2. Các ví dụ minh họa 28. Dạng 2. Xác định giá trị của biểu thức chứa góc đặc biệt, góc liên quan đặc biệt và dấu của giá trị lượng giác của góc lượng giác 31. 1. Phương pháp giải 31. 2. Các ví dụ minh họa 31. Dạng 3. Chứng minh đẳng thức lượng giác, chứng minh biểu thức không phụ thuộc góc x, đơn giản biểu thức 33. 1. Phương pháp giải 33. 2. Các ví dụ minh họa 33. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 36. D. BÀI TẬP TRẮC NGHIỆM 41. BÀI 3 . CÁC CÔNG THỨC LƯỢNG GIÁC 66. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 66. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 66. Dạng 1. Sử dụng công thức cộng 66. 1. Phương pháp giải 66. 2. Các ví dụ minh họa 67. Dạng 2. Sử dụng công thức nhân đôi và công thức hạ bậc 71. 1. Phương pháp 71. 2. Các ví dụ minh họa 72. Dạng 3. Công thức biến đổi tổng thành tích và tích thành tổng 76. 1. Phương pháp giải. 76. 2. Các ví dụ minh họa 76. Dạng 4. bất đẳng thức lượng giác và tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác 81. 1. Phương pháp giải 81. 2. Các ví dụ điển hình 81. Dạng 5. chứng minh đẳng thức, bất đẳng thức trong tam giác 84. 1. Phương pháp giải 84. 2. Các ví dụ minh họa 84. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 91. D. BÀI TẬP TRẮC NGHIỆM 98. BÀI 4 . HÀM SỐ LƯỢNG GIÁC VÀ ĐỒ THỊ 127. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 127. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP LỜI GIẢI BÀI TẬP 130. Dạng 1. Tìm tập xác đinh của hàm số 130. 1. Phương pháp 130. 2. Các ví dụ mẫu 131. Dạng 2. Xét tính chẵn lẻ của hàm số 133. 1. Phương pháp 133. 2. Các ví dụ mẫu 133. Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác 136. 1. Phương pháp 136. 2. Ví dụ mẫu 136. Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó 139. 1. Phương pháp 139. 2. Ví dụ mẫu 140. Dạng 5. Đồ thị của hàm số lượng giác 141. 1. Phương pháp 141. 2. Các ví dụ mẫu 142. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 145. D. BÀI TẬP TRẮC NGHIỆM 148. BÀI TẬP CUỐI CHƯƠNG 1 178. CÂU HỎI TRẮC NGHIỆM 178. BÀI TẬP TỰ LUẬN 181. BÀI TẬP TỔNG ÔN CHƯƠNG 1 185. PHẦN 1. TRẮC NGHIỆM 185. PHẦN 2. TỰ LUẬN 193.

Nguồn: toanmath.com

Đọc Sách

Bài giảng một số phương trình lượng giác thường gặp
Tài liệu gồm 36 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề một số phương trình lượng giác thường gặp, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1: Hàm Số Lượng Giác Và Phương Trình Lượng Giác. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Nhận biết được các dạng phương trình lượng giác thường gặp và cách giải. Kĩ năng: + Biết áp dụng công thức nghiệm đối với từng phương trình lượng giác cơ bản. + Vận dụng phương pháp giải phương trình phù hợp vào từng trường hợp. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. + Dạng 1: Phương trình lượng giác thuần nhất. + Dạng 2: Phương trình bậc hai của một hàm số lượng giác. + Dạng 3: Phương trình lượng giác đẳng cấp. + Dạng 4: Phương trình lượng giác đối xứng. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.
Bài giảng phương trình lượng giác cơ bản
Tài liệu gồm 16 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề phương trình lượng giác cơ bản, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1: Hàm Số Lượng Giác Và Phương Trình Lượng Giác. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Mục tiêu: + Nắm vững 4 phương trình lượng giác cơ bản và cách giải. Kiến thức: + Biết cách áp dụng công thức nghiệm đối với từng phương trình lượng giác cơ bản. + Vận dụng để giải những trường hợp mở rộng của 4 phương trình lượng giác cơ bản. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. + Dạng 1: Phương trình sin x = a. + Dạng 2: Phương trình cos x = b. + Dạng 3: Phương trình tan x = m. + Dạng 4: Phương trình cot x = n. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.
Bài giảng hàm số lượng giác
Tài liệu gồm 36 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề hàm số lượng giác, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1: Hàm Số Lượng Giác Và Phương Trình Lượng Giác. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Mục tiêu: 1. Nêu rõ tính chất 4 hàm lượng giác cơ bản sinx, cosx, tanx, cotx. 2. Phân biệt được tập xác định, tập giá trị, tính tuần hoàn và đồ thị của các hàm lượng giác. Kiến thức: + Tìm được tập xác định của hàm lượng giác. + Xác định được chu kì của các hàm lượng giác. + Vẽ được đồ thị của các hàm lượng giác. + Biết xác định giá trị lớn nhất, giá trị nhỏ nhất của một hàm lượng giác. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. + Dạng 1: Tìm tập xác định của hàm lượng giác. + Dạng 2: Tính chẵn – lẻ của hàm số lượng giác. + Dạng 3. Tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số lượng giác. + Dạng 4. Tính tuần hoàn và chu kỳ hàm lượng giác. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.
Phương pháp giải toán hàm số lượng giác và phương trình lượng giác
Tài liệu gồm 202 trang, được biên soạn bởi thầy giáo Lê Quang Xe, hướng dẫn phương pháp giải toán hàm số lượng giác và phương trình lượng giác, giúp học sinh lớp 11 tham khảo khi học chương trình Toán 11 phần Đại số và Giải tích chương 1. Phần I ĐẠI SỐ. Chương 1 . HÀM SỐ LƯỢNG GIÁC – PHƯƠNG TRÌNH LƯỢNG GIÁC 2. Bài 0. CÔNG THỨC LƯỢNG GIÁC 2. A Tóm tắt lý thuyết 2. Bài 1. HÀM SỐ LƯỢNG GIÁC 5. A Tóm tắt lý thuyết 5. B Các dạng toán thường gặp 8. + Dạng 1. Tìm tập xác định của hàm số lượng giác 8. + Dạng 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác 12. + Dạng 3. Xét tính chẵn lẻ của hàm số lượng giác 18. C Bài tập trắc nghiệm 21. Bài 2. PHƯƠNG TRÌNH LƯỢNG GIÁC 30. A Phương trình lượng giác cơ bản 30. B Một số kỹ năng giải phương trình lượng giác 32. + Dạng 1. Sử dụng thành thạo cung liên kết 32. + Dạng 2. Ghép cung thích hợp để áp dụng công thức tích thành tổng 41. + Dạng 3. Hạ bậc khi gặp bậc chẵn của sin và cos 46. + Dạng 4. Xác định nhân tử chung để đưa về phương trình tích 50. C Bài tập trắc nghiệm 77. Bài 3. MỘT PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 87. A Một số dạng toán thường gặp 87. + Dạng 1. Giải một số phương trình bậc hai đối với một hàm số lượng giác 87. + Dạng 2. Phương trình bậc nhất đối với sin và cos 105. + Dạng 3. Giải phương trình đẳng cấp 122. + Dạng 4. Giải phương trình đẳng cấp 132. + Dạng 5. Một số phương trình lượng giác khác 139. + Dạng 6. Một số phương trình lượng giác đặc biệt 146. B Bài tập trắc nghiệm 157. Bài 4. BÀI TẬP ÔN CHƯƠNG I 168. A Bài tập tự luận 168. B Bài tập trắc nghiệm 180.