Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng cơ bản và nâng cao Toán 10 (Tập 1 Đại số 10)

Tài liệu gồm 567 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tổng hợp đầy đủ lý thuyết, các dạng toán và bài tập từ cơ bản đến nâng cao các chuyên đề Toán lớp 10 phần Đại số. Khái quát nội dung tài liệu bài giảng cơ bản và nâng cao Toán 10 (Tập 1: Đại số 10): CHƯƠNG 1 . MỆNH ĐỀ – TẬP HỢP. BÀI 1. MỆNH ĐỀ. Dạng 1. Nhận biết mệnh đề, mệnh đề chứa biến. Dạng 2. Xét tính đúng sai của mệnh đề. Dạng 3. Phủ định của mệnh đề. Dạng 4. Mệnh đề kéo theo, mệnh đề đảo và hai mệnh đề tương đương. Dạng 5. Mệnh đề với kí hiệu với mọi, tồn tại. BÀI 2. TẬP HỢP. Dạng 1. Tập hợp và các phần tử của tập hợp. Dạng 2. Tập hợp con và hai tập hợp bằng nhau. BÀI 3. CÁC PHÉP TOÁN TẬP HỢP. Dạng 1. Giao và hợp của hai tập hợp. Dạng 2. Hiệu và phần bù của hai tập hợp. Dạng 3. Bài toán sử dụng biểu đồ Ven. Dạng 4. Chứng minh X ⊂ Y. Chứng minh X = Y. BÀI 4. CÁC TẬP HỢP SỐ. Dạng 1. Tìm giao và hợp các khoảng, nửa khoảng, đoạn. Dạng 2. Xác định hiệu và phần bù các khoảng, đoạn, nửa khoảng. BÀI 5. SỐ GẦN ĐÚNG VÀ SAI SỐ. Dạng 1. Biết số gần đúng a và độ chính xác d. Ước lượng sai số tương đối, các chữ số chắc, viết dưới dạng chuẩn. Dạng 2. Biết số gần đúng a và sai số tương đối không vượt quá c. Ước lượng sai số tuyệt đối, các chữ số chắc, viết dưới dạng chuẩn. Dạng 3. Quy tròn số. Ước lượng sai số tuyệt đối, sai số tương đối của số quy tròn. Dạng 4. Sai số của tổng, tích và thương. Dạng 5. Xác định các chữ số chắc của một số gần đúng, dạng chuẩn của chữ số gần đúng và kí hiệu khoa học của một số. CHƯƠNG 2 . HÀM SỐ BẬC NHẤT VÀ BẬC HAI. BÀI 1. ĐẠI CƯƠNG VỀ HÀM SỐ. Dạng 1. Tính giá trị của hàm số tại một điểm. Dạng 2. Tìm tập xác định của hàm số. Dạng 3. Tính đồng biến, nghịch biến của hàm số. Dạng 4. Dựa vào đồ thị tìm các khoảng đồng biến, nghịch biến. Dạng 5. Xét tính chẵn lẻ của hàm số. BÀI 2. HÀM SỐ BẬC NHẤT. Dạng 1. Xét tính đồng biến, nghịch biến của hàm số. Dạng 2. Đồ thị hàm số bậc nhất. Dạng 3. Vị trí tương đối của hai đường thẳng. Dạng 4. Xác định hàm số bậc nhất. Dạng 5. Bài toán thực tế. BÀI 3. HÀM SỐ BẬC HAI. Dạng 1. Bảng biến thiên, tính đơn điệu, GTLN và GTNN của hàm số. Dạng 2. Xác định hàm số bậc hai. Dạng 3. Đồ thị hàm số bậc hai. Dạng 4. Sự tương giao. Dạng 5. Toán thực tế. CHƯƠNG 3 . PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH. BÀI 1. ĐẠI CƯƠNG VỀ PHƯƠNG TRÌNH. Dạng 1. Điều kiện xác định của phương trình. Dạng 2. Sử dụng điều kiện xác định của phương trình để tìm gghiệm của phương trình. Dạng 3. Phương trình tương đương, phương trình hệ quả. BÀI 2. PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC NHẤT VÀ PHƯƠNG TRÌNH BẬC HAI. Dạng 1. Phương trình tích. Dạng 2. Phương trình chứa ẩn trong giá trị tuyệt đối. Dạng 3. Phương trình chứa ẩn ở mẫu. Dạng 4. Phương trình chứa ẩn ở trong dấu căn. Dạng 5. Định lý Vi-et và ứng dụng. Dạng 6. Giải và biện luận phương trình. BÀI 3. PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT NHIỀU ẨN. Dạng 1. Giải và biện luận hệ phương trình bậc nhất hai ẩn. Dạng 2. Giải và biện luận hệ phương trình bậc nhất ba ẩn. Dạng 3. Giải và biện luận hệ phương trình bậc cao. Dạng 4. Các bài toán thực tế phương trình, hệ phương trình. CHƯƠNG 4 . BẤT ĐẲNG THỨC – BẤT PHƯƠNG TRÌNH. BÀI 1. BẤT ĐẲNG THỨC. Dạng 1. Chứng minh bất đẳng thức dựa vào định nghĩa và tính chất. Dạng 2. Sử dụng bất đẳng thức Cauchy (Côsi) để chứng minh bất đẳng thức và tìm giá tri lớn nhất, nhỏ nhất. Dạng 3. Đặt ẩn phụ trong bất đẳng thức. Dạng 4. Sử dụng bất đẳng thức phụ. BÀI 2. BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. Dạng 1. Điều kiện xác định của bất phương trình. Dạng 2. Cặp bất phương trình tương đương. Dạng 3. Bất phương trình bậc nhất một ẩn. Dạng 4. Hệ bất phương trình bậc nhất một ẩn. BÀI 3. DẤU CỦA NHỊ THỨC BẬC NHẤT. Dạng 1. Xét dấu nhị thức bậc nhất. Dạng 2. Bất phương trình tích. Dạng 3. Bất phương trình chứa ẩn ở mẫu. Dạng 4. Bất phương trình chứa trị tuyệt đối. BÀI 4. BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. Dạng 1. Bất phương trình bậc nhất hai ẩn. Dạng 2. Hệ bất phương trình bậc nhất hai ẩn. Dạng 3. Bài toán tối ưu. BÀI 5. DẤU CỦA TAM THỨC BẬC HAI. Dạng 1. Xét dấu của tam thức bậc hai áp dụng vào giải bất phương trình bậc hai đơn giản. Dạng 2. Ứng dụng về dấu của tam thức bậc hai để giải phương trình tích. Dạng 3. Ứng dụng về dấu của tam thức bậc hai để giải phương trình chứa ẩn ở mẫu. Dạng 4. Ứng dụng về dấu của tam thức bậc hai để tìm tập xác định của hàm số. Dạng 5. Tìm điều kiện của tham số để phương trình bậc hai vô nghiệm – có nghiệm – có hai nghiệm phân biệt. Dạng 6. Tìm điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn điều kiện cho trước. Dạng 7. Tìm điều kiện của tham số để bất phương trình vô nghiệm – có nghiệm – nghiệm đúng. Dạng 8. Hệ bất phương trình bậc hai. CHƯƠNG 5 . THỐNG KÊ. BÀI 1. BẢNG PHÂN BỐ TẦN SỐ – TẦN SUẤT. BÀI 2. BIỂU ĐỒ. BÀI 3. SỐ TRUNG BÌNH – SỐ TRUNG VỊ – MỐT. BÀI 4. PHƯƠNG SAI VÀ ĐỘ LỆCH CHUẨN. CHƯƠNG 6 . CUNG VÀ GÓC LƯỢNG GIÁC, CÔNG THỨC LƯỢNG GIÁC. BÀI 1. CUNG VÀ GÓC LƯỢNG GIÁC. Dạng. Xác định các yếu tố liên quan đến cung và góc lượng giác. BÀI 2. GIÁ TRỊ LƯỢNG GIÁC MỘT CUNG. Dạng 1. Biểu diễn góc và cung lượng giác. Dạng 2. Xác định giá trị của biểu thức chứa góc đặc biệt, góc liên quan đặc biệt và dấu của giá trị lượng giác của góc lượng giác. Dạng 3. Chứng minh đẳng thức lượng giác, chứng minh biểu thức không phụ thuộc góc x, đơn giản biểu thức. Dạng 4. Tính giá trị của một biểu thức lượng giác khi biết một giá trị lượng giác. BÀI 3. CÔNG THỨC LƯỢNG GIÁC. Dạng 1. Tính giá trị lượng giác, biểu thức lượng giác. Dạng 2. Xác định giá trị của một biểu thức lượng giác có điều kiện. Dạng 3. Chứng minh đẳng thức, đơn giản biểu thức lượng giác và chứng minh biểu thức lượng giác không phụ thuộc vào biến. Dạng 4. Bất đẳng thức lượng giác và tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác. Dạng 5. Chứng minh đẳng thức, bất đẳng thức trong tam giác.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề đa thức và số học
Tài liệu chuyên đề đa thức và số học gồm 102 trang được biên soạn bởi các tác giả: Doãn Quang Tiến, Huỳnh Kim Linh, Tôn Ngọc Minh Quân, Nguyễn Minh Tuấn, bổ trợ cho học sinh trong quá trình ôn thi học sinh giỏi môn Toán. Chủ đề số học và đa thức là những chủ đề thường xuyên xuất hiện trong các đề thi học sinh giỏi môn Toán các cấp, với các bài toán khó và rất khó. Đa thức là mảng mà chứa đựng trong nó các yếu tố về đại số, giải tích, hình học và các tính chất về số học, chính vì thế ta có thể xem đa thức có thể xem như là các bài toán tổ hợp giữa các mảng khác của Toán học cũng như đóng vai trò liên kết các mảng đó lại với nhau thành một thể thống nhất. Số học từ lâu luôn được mệnh danh là “bà chúa của Toán học”, đã có rất nhiều tính chất hay, quy luật đẹp và bất ngờ của số học được phát hiện, điều thú vị là nhiều mệnh đề khó nhất của số học được phát biểu rất đơn giản, ai cũng hiểu được, nhiều bài toán khó nhưng có thể giải rất sáng tạo với những kiến thức số học phổ thông đơn giản. Chính vì thế sự kết hợp của hai mảng kiến thức này sẽ mang tới cho chúng ta những bài toán đẹp. Trong chủ đề của bài viết này, chúng ta sẽ đi khám phá và chinh phục phần nào vẻ đẹp của sự kết hợp đó. [ads] Khái quát nội dung tài liệu chuyên đề đa thức và số học: PHẦN 1 . CÁC KIẾN THỨC CƠ BẢN 1. Đa thức. 2. Một số tính chất cần nắm. 3. Những định lý quan trọng: Định lý Bézout, Định lý Schur, Định lý Dirichlet về số nguyên tố, Định lý về dãy tuần hoàn, Bổ đề Hensel, Công thức nội suy Lagrange. PHẦN 2 . BÀI TẬP VÀ HƯỚNG DẪN GIẢI: Tuyển chọn 100 bài toán thuộc chuyên đề đa thức và số học có lời giải chi tiết.
Phương trình hàm trên tập rời rạc
Những bài toán về chủ đề phương trình hàm hiện nay đã trở nên khá phổ biến đối với các bạn học sinh yêu thích môn Toán, vì chúng đã xuất hiện thường xuyên hơn trong các đề thi học sinh giỏi môn Toán các cấp cũng như kì thi chọn đội tuyển HSG Toán cấp quốc gia, VMO hay các kì thi khu vực và quốc tế. Đặc biệt, trong các lớp dạng phương trình hàm, thì dạng phương trình hàm trên các tập rời rạc là một mảng được ít các học sinh chú ý tới bởi độ khó và chưa được tiếp xúc nhiều đồng thời ngoài việc sử dụng các kĩ thuật xử lý phương trình hàm cơ bản chúng ta còn phải sử dụng các tính chất số học rất đặc sắc của tập rời rạc như là: tính chia hết, tính chất của số nguyên tố, của số chính phương … Trong tài liệu này, nhóm tác giả Chinh Phục Olympic Toán: Nguyễn Minh Tuấn, Doãn Quang Tiến, Tôn Ngọc Minh Quân sẽ mang tới cho bạn đọc tuyển tập các bài toán phương trình hàm trên tập rời rạc và một số bài toán phương trình hàm khác hay và khó, với những lời giải vô cùng đặc sắc, nhằm giúp bạn đọc có thể có nhiều cách nhìn khác về mảng toán này đồng thời cũng như chuẩn bị cho các kì học sinh giỏi Toán, kỳ thi Olympic. [ads] Để giải quyết các bài toán phương trình hàm trên tập rời rạc mà có thể giải bằng các tính chất số học thì nên lưu ý đến một số dấu hiệu sau: + Nếu xuất hiện các biểu thức tuyến tính chứa lũy thừa, có thể nghĩ đến các bài toán liên quan đến cấp của phần tử, các phương trình đặc biệt như phương trình Pell hay phương trình Pythagore … hay đưa về việc xử lý các phương trình vô định nghiệm nguyên. + Nếu hàm số đã cho là hàm nhân tính, ta thường hay xét đến giá trị hàm số tại các điểm là số nguyên tố hoặc dãy vô hạn các số nguyên tố. + Sử dụng các đẳng thức và bất đẳng thức số học. + Và đặc biệt nhất, trong một số bài toán, hệ cơ số đếm có thể dùng để xây dựng nhiều dãy số có tính chất số học thú vị. Trong hệ cơ số 10 chúng ta có thể rất khó nhận ra quy luật của dãy, nhưng nếu chọn được hệ cơ số phù hợp thì bài toán có thể giải quyết đơn giản hơn rất nhiều. Trong tài liệu này, nhóm tác giả sẽ đề cập đến các bài toán phương trình hàm mà sử dụng các tính chất cũng như các phương pháp trong số học để giải, nhằm giúp bạn đọc hiểu rõ hơn và có một cái nhìn mới mẻ hơn về các phương pháp khác để giải phương trình hàm, bên cạnh đó nhóm tác giả cũng sẽ giới thiệu cho bạn đọc các bài toán phương trình hàm và khó.
10 trọng điểm bồi dưỡng học sinh giỏi môn Toán 12 - Lê Hoành Phò
Giống như cuốn sách 10 trọng điểm bồi dưỡng học sinh giỏi môn Toán 10 của cùng tác giả Lê Hoành Phò, cuốn sách này cũng bao gồm 21 chuyên đề với nội dung là tóm tắt kiến thức trọng tâm của Toán phổ thông và Toán chuyên, phần các bài Toán chọn lọc có khoảng 900 bài với nhiều dạng loại và mức độ từ cơ bản đến phức tạp, bài tập tự luyện khoảng 250 bài, có hướng dẫn và đáp số. Cuốn sách 10 trọng điểm bồi dưỡng học sinh giỏi (HSG) môn Toán 12 – Lê Hoành Phò có 3 chuyên đề nâng cao: Đa thức, Phương trình nghiệm nguyên và Toán suy luận. Nội dung cụ thủ như sau: + Chuyên đề 1. Tính đơn điệu và cực trị + Chuyên đề 2. Khảo sát và vẽ đồ thị hàm số + Chuyên đề 3. Bài toán liên quan đồ thị + Chuyên đề 4. Hàm số mũ và logarit + Chuyên đề 5. Phương trình mũ và logarit + Chuyên đề 6.Bất đẳng thức và giá trị lớn nhất, nhỏ nhất + Chuyên đề 7. Nguyên hàm hàm hữu tỉ, hàm lượng giác + Chuyên đề 8. Nguyên hàm hàm vô tỉ, hàm lượng giác [ads] + Chuyên đề 9. Ứng dụng tích phân + Chuyên đề 10. Số phức và ứng dụng + Chuyên đề 11. Phép biến hình không gian + Chuyên đề 12. Khối đa diện và lăng trụ + Chuyên đề 13. Khối tứ diện và khối chóp + Chuyên đề 14. Khối tròn xoay + Chuyên đề 15. Tọa độ không gian + Chuyên đề 16. Phương trình đường và mặt + Chuyên đề 17. Lý thuyết số + Chuyên đề 18. Phương trình hàm + Chuyên đề 19. Nghiệm của đa thức + Chuyên đề 20. Tổ hợp và rời rạc + Chuyên đề 21.Dãy số Hy vọng cuốn sách sẽ là cẩm nang giúp các em ôn luyện thật tốt cho kỳ thi học sinh giỏi Toán 12 sắp tới. Chúc các em đạt giải cao!
10 trọng điểm bồi dưỡng học sinh giỏi môn Toán 11 - Lê Hoành Phò
Cuốn sách gồm 537 trang, được biên soạn bởi thầy giáo Lê Hoành Phò, tuyển chọn 10 trọng điểm bồi dưỡng học sinh giỏi môn Toán 11. Chuyên đề 1. Hàm số lượng giác. Chuyên đề 2. Phương trình lượng giác. Chuyên đề 3. Bất phương trình và hệ phương trình lượng giác. Chuyên đề 4. Tổ hợp và xác suất. Chuyên đề 5. Các đại lượng tổ hợp và nhị thức Newton. Chuyên đề 6. Cấp số và tổng. Chuyên đề 7. Dãy số. Chuyên đề 8. Giới hạn dãy số. Chuyên đề 9. Giới hạn hàm số và liên tục. Chuyên đề 10. Đạo hàm và vi phân. [ads] Chuyên đề 11. Định lí Lagrange và tính đơn điệu, cực trị, lồi lõm. Chuyên đề 12. Ứng dụng đạo hàm. Chuyên đề 13. Phép biến hình và dời hình. Chuyên đề 14. Phép đồng dạng và phép nghịch đảo. Chuyên đề 15. Quan hệ song song. Chuyên đề 16. Vectơ trong không gian. Chuyên đề 17. Quan hệ vuông góc. Chuyên đề 18. Thể tích khối đa diện và khối cầu.