Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng cơ bản và nâng cao Toán 10 (Tập 1 Đại số 10)

Tài liệu gồm 567 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tổng hợp đầy đủ lý thuyết, các dạng toán và bài tập từ cơ bản đến nâng cao các chuyên đề Toán lớp 10 phần Đại số. Khái quát nội dung tài liệu bài giảng cơ bản và nâng cao Toán 10 (Tập 1: Đại số 10): CHƯƠNG 1 . MỆNH ĐỀ – TẬP HỢP. BÀI 1. MỆNH ĐỀ. Dạng 1. Nhận biết mệnh đề, mệnh đề chứa biến. Dạng 2. Xét tính đúng sai của mệnh đề. Dạng 3. Phủ định của mệnh đề. Dạng 4. Mệnh đề kéo theo, mệnh đề đảo và hai mệnh đề tương đương. Dạng 5. Mệnh đề với kí hiệu với mọi, tồn tại. BÀI 2. TẬP HỢP. Dạng 1. Tập hợp và các phần tử của tập hợp. Dạng 2. Tập hợp con và hai tập hợp bằng nhau. BÀI 3. CÁC PHÉP TOÁN TẬP HỢP. Dạng 1. Giao và hợp của hai tập hợp. Dạng 2. Hiệu và phần bù của hai tập hợp. Dạng 3. Bài toán sử dụng biểu đồ Ven. Dạng 4. Chứng minh X ⊂ Y. Chứng minh X = Y. BÀI 4. CÁC TẬP HỢP SỐ. Dạng 1. Tìm giao và hợp các khoảng, nửa khoảng, đoạn. Dạng 2. Xác định hiệu và phần bù các khoảng, đoạn, nửa khoảng. BÀI 5. SỐ GẦN ĐÚNG VÀ SAI SỐ. Dạng 1. Biết số gần đúng a và độ chính xác d. Ước lượng sai số tương đối, các chữ số chắc, viết dưới dạng chuẩn. Dạng 2. Biết số gần đúng a và sai số tương đối không vượt quá c. Ước lượng sai số tuyệt đối, các chữ số chắc, viết dưới dạng chuẩn. Dạng 3. Quy tròn số. Ước lượng sai số tuyệt đối, sai số tương đối của số quy tròn. Dạng 4. Sai số của tổng, tích và thương. Dạng 5. Xác định các chữ số chắc của một số gần đúng, dạng chuẩn của chữ số gần đúng và kí hiệu khoa học của một số. CHƯƠNG 2 . HÀM SỐ BẬC NHẤT VÀ BẬC HAI. BÀI 1. ĐẠI CƯƠNG VỀ HÀM SỐ. Dạng 1. Tính giá trị của hàm số tại một điểm. Dạng 2. Tìm tập xác định của hàm số. Dạng 3. Tính đồng biến, nghịch biến của hàm số. Dạng 4. Dựa vào đồ thị tìm các khoảng đồng biến, nghịch biến. Dạng 5. Xét tính chẵn lẻ của hàm số. BÀI 2. HÀM SỐ BẬC NHẤT. Dạng 1. Xét tính đồng biến, nghịch biến của hàm số. Dạng 2. Đồ thị hàm số bậc nhất. Dạng 3. Vị trí tương đối của hai đường thẳng. Dạng 4. Xác định hàm số bậc nhất. Dạng 5. Bài toán thực tế. BÀI 3. HÀM SỐ BẬC HAI. Dạng 1. Bảng biến thiên, tính đơn điệu, GTLN và GTNN của hàm số. Dạng 2. Xác định hàm số bậc hai. Dạng 3. Đồ thị hàm số bậc hai. Dạng 4. Sự tương giao. Dạng 5. Toán thực tế. CHƯƠNG 3 . PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH. BÀI 1. ĐẠI CƯƠNG VỀ PHƯƠNG TRÌNH. Dạng 1. Điều kiện xác định của phương trình. Dạng 2. Sử dụng điều kiện xác định của phương trình để tìm gghiệm của phương trình. Dạng 3. Phương trình tương đương, phương trình hệ quả. BÀI 2. PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC NHẤT VÀ PHƯƠNG TRÌNH BẬC HAI. Dạng 1. Phương trình tích. Dạng 2. Phương trình chứa ẩn trong giá trị tuyệt đối. Dạng 3. Phương trình chứa ẩn ở mẫu. Dạng 4. Phương trình chứa ẩn ở trong dấu căn. Dạng 5. Định lý Vi-et và ứng dụng. Dạng 6. Giải và biện luận phương trình. BÀI 3. PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT NHIỀU ẨN. Dạng 1. Giải và biện luận hệ phương trình bậc nhất hai ẩn. Dạng 2. Giải và biện luận hệ phương trình bậc nhất ba ẩn. Dạng 3. Giải và biện luận hệ phương trình bậc cao. Dạng 4. Các bài toán thực tế phương trình, hệ phương trình. CHƯƠNG 4 . BẤT ĐẲNG THỨC – BẤT PHƯƠNG TRÌNH. BÀI 1. BẤT ĐẲNG THỨC. Dạng 1. Chứng minh bất đẳng thức dựa vào định nghĩa và tính chất. Dạng 2. Sử dụng bất đẳng thức Cauchy (Côsi) để chứng minh bất đẳng thức và tìm giá tri lớn nhất, nhỏ nhất. Dạng 3. Đặt ẩn phụ trong bất đẳng thức. Dạng 4. Sử dụng bất đẳng thức phụ. BÀI 2. BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. Dạng 1. Điều kiện xác định của bất phương trình. Dạng 2. Cặp bất phương trình tương đương. Dạng 3. Bất phương trình bậc nhất một ẩn. Dạng 4. Hệ bất phương trình bậc nhất một ẩn. BÀI 3. DẤU CỦA NHỊ THỨC BẬC NHẤT. Dạng 1. Xét dấu nhị thức bậc nhất. Dạng 2. Bất phương trình tích. Dạng 3. Bất phương trình chứa ẩn ở mẫu. Dạng 4. Bất phương trình chứa trị tuyệt đối. BÀI 4. BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. Dạng 1. Bất phương trình bậc nhất hai ẩn. Dạng 2. Hệ bất phương trình bậc nhất hai ẩn. Dạng 3. Bài toán tối ưu. BÀI 5. DẤU CỦA TAM THỨC BẬC HAI. Dạng 1. Xét dấu của tam thức bậc hai áp dụng vào giải bất phương trình bậc hai đơn giản. Dạng 2. Ứng dụng về dấu của tam thức bậc hai để giải phương trình tích. Dạng 3. Ứng dụng về dấu của tam thức bậc hai để giải phương trình chứa ẩn ở mẫu. Dạng 4. Ứng dụng về dấu của tam thức bậc hai để tìm tập xác định của hàm số. Dạng 5. Tìm điều kiện của tham số để phương trình bậc hai vô nghiệm – có nghiệm – có hai nghiệm phân biệt. Dạng 6. Tìm điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn điều kiện cho trước. Dạng 7. Tìm điều kiện của tham số để bất phương trình vô nghiệm – có nghiệm – nghiệm đúng. Dạng 8. Hệ bất phương trình bậc hai. CHƯƠNG 5 . THỐNG KÊ. BÀI 1. BẢNG PHÂN BỐ TẦN SỐ – TẦN SUẤT. BÀI 2. BIỂU ĐỒ. BÀI 3. SỐ TRUNG BÌNH – SỐ TRUNG VỊ – MỐT. BÀI 4. PHƯƠNG SAI VÀ ĐỘ LỆCH CHUẨN. CHƯƠNG 6 . CUNG VÀ GÓC LƯỢNG GIÁC, CÔNG THỨC LƯỢNG GIÁC. BÀI 1. CUNG VÀ GÓC LƯỢNG GIÁC. Dạng. Xác định các yếu tố liên quan đến cung và góc lượng giác. BÀI 2. GIÁ TRỊ LƯỢNG GIÁC MỘT CUNG. Dạng 1. Biểu diễn góc và cung lượng giác. Dạng 2. Xác định giá trị của biểu thức chứa góc đặc biệt, góc liên quan đặc biệt và dấu của giá trị lượng giác của góc lượng giác. Dạng 3. Chứng minh đẳng thức lượng giác, chứng minh biểu thức không phụ thuộc góc x, đơn giản biểu thức. Dạng 4. Tính giá trị của một biểu thức lượng giác khi biết một giá trị lượng giác. BÀI 3. CÔNG THỨC LƯỢNG GIÁC. Dạng 1. Tính giá trị lượng giác, biểu thức lượng giác. Dạng 2. Xác định giá trị của một biểu thức lượng giác có điều kiện. Dạng 3. Chứng minh đẳng thức, đơn giản biểu thức lượng giác và chứng minh biểu thức lượng giác không phụ thuộc vào biến. Dạng 4. Bất đẳng thức lượng giác và tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác. Dạng 5. Chứng minh đẳng thức, bất đẳng thức trong tam giác.

Nguồn: toanmath.com

Đọc Sách

Sử dụng phương tích - trục đẳng phương trong bài toán chứng minh đồng quy, thẳng hàng
Tài liệu gồm 23 trang, hướng dẫn phương pháp sử dụng phương tích – trục đẳng phương trong bài toán chứng minh đồng quy, thẳng hàng; tài liệu được sử dụng để bồi dưỡng học sinh giỏi Toán bậc THPT. PHẦN 1 . ĐẶT VẤN ĐỀ. Các bài toán Hình học phẳng là một phần quan trọng trong các chuyên đề toán học và đồng thời nó cũng là một mảng khó trong chương trình toán THPT chuyên. Chính vì thế trong các kì thi học sinh giỏi quốc gia, thi Olympic Toán quốc tế và khu vực, những bài toán Hình học phẳng cũng hay được đề cập và thường được xem là bài toán khó của kì thi. Trong các dạng toán liên quan đến Hình học phẳng thì bài toán đồng quy, thẳng hàng vừa được coi là bài toán quen và lạ, vừa dễ vừa khó. Bởi bài toán đồng quy, thẳng hàng đã được làm quen từ khi các em bắt đầu học Hình học cho đến chúng ta cảm thấy rất quen thuộc với Hình hoc nó vẫn hiện hữu. Nó lại là bài toán có tần suất xuất hiện nhiều nhất trong tất cả các kì thi HSG các cấp với rất nhiều hình thái khác nhau, mức độ khác nhau thậm chí là rất khó. Các em học sinh bậc Trung học phổ thông thường gặp một số khó khăn khi tiếp cận các dạng toán liên quan đến bài toán đồng quy thẳng hàng nói riêng và bài toán Hình học phẳng nói chung bởi không biết phải bắt đầu từ đâu và khó khăn khi định hướng vẽ hình phụ. Cái khó của các em chính là không nắm được tường tận các phương pháp giải quyết từ đó dẫn đến khó khăn trong khâu định hướng. Để hiểu và vận dụng tốt một số dạng toán cơ bản và vận dụng kiến thức Hình học phẳng vào giải toán đồng quy thẳng hàng thì thông thường học sinh phải có kiến thức nền tảng Hình học tương đối đầy đủ và chắc chắn trên tất cả các lĩnh vực của nó. Đó là một khó khăn rất lớn đối với giáo viên và học sinh khi giảng dạy và học tập phần các kiến thức cần thiết trong Hình học. Trong số rất nhiều các phương pháp để giải quyết bài toán đồng quy, thẳng hàng tác giả lựa chọn công cụ “Phương tích, trục đẳng phương”. Đây là một trong những công cụ mạnh và hữu hiệu để giải quyết lớp bài toán này. PHẦN II . NỘI DUNG SỬ DỤNG PHƯƠNG TÍCH – TRỤC ĐẲNG PHƯƠNG. 1.1 Lý thuyết. 1.1.1 Phương tích của một điểm đối với đường tròn. 1.1.2. Trục đẳng phương của hai đường tròn. 1.1.3. Tâm đẳng phương. 1.2 Bài tập minh họa. 1.3 Bài tập tương tự. TÀI LIỆU THAM KHẢO
Sử dụng định lý Ceva và Menelaus trong bài toán chứng minh đồng quy, thẳng hàng
Tài liệu gồm 18 trang, hướng dẫn phương pháp sử dụng định lý Ceva và Menelaus trong bài toán chứng minh đồng quy, thẳng hàng; tài liệu được sử dụng để bồi dưỡng học sinh giỏi Toán bậc THPT. Phần 1 . Đặt vấn đề. Các bài toán Hình học phẳng là một phần quan trọng trong các chuyên đề toán học và đồng thời nó cũng là một mảng khó trong chương trình toán THPT chuyên. Chính vì thế trong các kì thi học sinh giỏi quốc gia, thi Olympic Toán quốc tế và khu vực, những bài toán Hình học phẳng cũng hay được đề cập và thường được xem là bài toán khó của kì thi. Trong các dạng toán liên quan đến Hình học phẳng thì bài toán đồng quy, thẳng hàng vừa được coi là bài toán quen và lạ, vừa dễ vừa khó. Bởi bài toán đồng quy, thẳng hàng đã được làm quen từ khi các em bắt đầu học Hình học cho đến chúng ta cảm thấy rất quen thuộc với Hình hoc nó vẫn hiện hữu. Nó lại là bài toán có tần suất xuất hiện nhiều nhất trong tất cả các kì thi HSG các cấp với rất nhiều hình thái khác nhau, mức độ khác nhau thậm chí là rất khó. Các em học sinh bậc Trung học phổ thông thường gặp một số khó khăn khi tiếp cận các dạng toán liên quan đến bài toán đồng quy thẳng hàng nói riêng và bài toán Hình học phẳng nói chung bởi không biết phải bắt đầu từ đâu và khó khăn khi định hướng vẽ hình phụ. Cái khó của các em chính là không nắm được tường tận các phương pháp giải quyết từ đó dẫn đến khó khăn trong khâu định hướng. Để hiểu và vận dụng tốt một số dạng toán cơ bản và vận dụng kiến thức Hình học phẳng vào giải toán đồng quy thẳng hàng thì thông thường học sinh phải có kiến thức nền tảng Hình học tương đối đầy đủ và chắc chắn trên tất cả các lĩnh vực của nó. Trong số rất nhiều các phương pháp để giải quyết bài toán đồng quy, thẳng hàng tác giả lựa chọn các phương pháp “Sử dụng định lý Ceva và Menelaus” để giải quyết lớp bài toán trên. Đây là phương pháp khá cổ điển và đặc trưng cho lớp bài toán này. Phần 2 . ĐỊNH LÝ CEVA VÀ MENELAUS TRONG BÀI TOÁN CHỨNG MINH ĐỒNG QUY, THẲNG HÀNG. 1 Lý thuyết. 1.1. Định lí Ceva. 1.2. Định lí Ceva dạng lượng giác (Ceva sin). 1.3 Định lí Menelaus. 2 Bài tập minh họa. 3 Bài tập tương tự. TÀI LIỆU THAM KHẢO
Ứng dụng hàng điểm điều hòa trong bài toán đường phân giác và bài toán đồng quy, thẳng hàng
Tài liệu gồm 29 trang, được biên soạn bởi thầy giáo Nguyễn Bá Hoàng (trường THPT chuyên Lào Cai, tỉnh Lào Cai), hướng dẫn phương pháp ứng dụng hàng điểm điều hòa trong bài toán đường phân giác và bài toán đồng quy, thẳng hàng; tài liệu được sử dụng để bồi dưỡng học sinh giỏi Toán bậc THPT. A. PHẦN MỞ ĐẦU I. Lý do chọn đề tài: Các bài toán về Hình học phẳng thường xuyên xuất hiện trong các kì thi HSG môn toán và luôn được đánh giá là nội dung khó trong đề thi. Có rất nhiều dạng bài tập về hình học phẳng cùng với sự tương ứng của các công cụ đi cùng, trong đó hàng điểm điều hòa là một trong những công cụ mạnh để giải nhiều lớp bài toán về hình học. Mặc dù là một vấn đề khá quen thuộc của hình học phẳng, kiến thức về nó khá đơn giản và dễ hiểu, tuy nhiên nó có ứng dụng nhiều đối với các bài toán chứng minh vuông góc, đồng quy, thẳng hàng, điểm cố đinh, đường cố định hay các bài toán về tập hợp điểm …. Chính vì thế trong các kì thi học sinh giỏi quốc gia, thi Olympic Toán quốc tế và khu vực, những bài toán có liên quan đến hàng điểm điều hòa thường xuyên được đề cập và thường được xem là những dạng toán hay của kì thi. Chính vì vậy tác giả lựa chọn chuyên đề: “Ứng dụng hàng điểm điều hòa trong bài toán phân giác và đồng quy, thẳng hàng” để thấy được ứng dụng quan trọng của hàng điểm điều hòa đối với khá nhiều dạng bài tập hình học phẳng. Trong chuyên đề tác giả cố gắng tập hợp được các bài toán đặc trưng cho việc sử dụng công cụ hàng điểm điều hòa. II. Mục đích của chuyên đề: Thông qua chuyên đề “Ứng dụng hàng điểm điều hòa trong bài toán phân giác và đồng quy, thẳng hàng” tác giả rất mong muốn nhận được góp ý trao đổi của các bạn đồng nghiệp và các em học sinh. Chúng tôi mong muốn chuyên đề này góp một phần nhỏ để việc ứng dụng hàng điểm điều hòa trong bài toán hình học phẳng đạt hiệu quả cao nhất. Từ đó giúp các em học sinh hiểu rõ hơn về việc sử dụng hàng điểm điều hòa và tăng khả năng vận dụng nó vào giải các bài toán hình học một cách tốt nhất. B. PHẦN NỘI DUNG I. Hệ thống lý thuyết cơ bản về hàng điểm điều hòa. 1. Tỉ số kép của hàng điểm. 2. Hàng điểm điều hòa. 3. Tỉ số kép của chùm đường thẳng – Chùm điều hòa. 4. Tứ giác điều hòa. II. Bài tập áp dụng. Dạng 1: Khai thác bài toán liên quan đến đường phân giác. Dạng 2: Chứng minh đồng quy, thẳng hàng. C. PHẦN KẾT LUẬN Trên đây là một số bài toán về đường phân giác, đồng quy, thẳng hàng sử dụng đến hàng điểm điều hòa. Kiến thức về hàng điểm điều hòa khá dễ hiểu và đơn giản nhưng ứng dụng của nó thì khá nhiều. Thông qua đó giúp học sinh tiếp cận và hình thành kĩ năng sử dụng hàng điểm điều hòa, cũng như lựa chọn được cách giải bài toán phù hợp, tăng thêm tính say mê, tích cực tìm tòi và sáng tạo. Chuyên đề trên nhằm mục đích trao đổi với các thầy cô dạy bộ môn toán về việc sử dụng hàng điểm điều hòa để giải các bài toán hình học phẳng. Do kiến thức còn nhiều hạn chế nên chắc rằng chuyên đề khó tránh khỏi các thiếu sót, chúng tôi mong có sự góp ý của quý thầy cô để chuyên đề được hoàn thiện hơn. Tác giả xin chân thành cảm ơn!
Một số phương pháp giải phương trình hàm và bất phương trình hàm - Bùi Ngọc Diệp
Tài liệu gồm 109 trang, được biên soạn bởi thầy giáo Bùi Ngọc Diệp, hướng dẫn một số phương pháp giải phương trình hàm và bất phương trình hàm qua các kỳ thi Olympic Toán. Hàm số là một trong những đối tượng nghiên cứu trung tâm của Toán sơ cấp. Một trong những chủ đề liên quan đến hàm số thường xuyên xuất hiện trong các kỳ thi chọn học sinh giỏi cấp tỉnh, kỳ thi chọn học sinh giỏi Quốc gia và kỳ thi Olympic toán Quốc tế là giải phương trình hàm, bất phương trình hàm. Đối với các phương trình, bất phương trình đại số trong sách giáo khoa, mục tiêu của chúng ta là tìm các biến chưa biết nhưng đối với phương trình hàm, bất phương trình hàm chúng ta cần phải tìm một “hàm số” thỏa mãn một số điều kiện ràng buộc cho trước của bài toán. Đây là một chủ đề khó. Đừng trước mỗi bài toán thuộc chủ đề này, học sinh phải nắm vững được những kĩ thuật, phương pháp giải, cũng như phải có sự xử lí khéo léo khi đứng trước những tình huống cụ thể. Chúng ta có nhiều phương pháp cũng như hướng tiếp cận khác nhau đối với các bài toán thuộc chủ đề này. Với mục tiêu muốn đóng góp một phần nào đó trong việc hoàn thành một bức tranh tổng thể về các phương pháp giải phương trình hàm và bất phương trình hàm, trong chuyên đề này chúng tôi sẽ giới thiệu tới bạn đọc hai phương pháp thường được sử dụng để giải quyết các bài toán thuộc chủ đề này thông qua các bài toán cụ thể, đó là phương pháp giải tích và phương pháp tổng hợp. Trong từng phương pháp, chúng tôi sẽ đưa ra một hệ thống các bài toán với những lời giải chi tiết, rõ ràng. Hơn nữa, sau mỗi lời giải, chúng tôi ra đưa những nhận xét, phân tích, bình luận để giúp người đọc có một cách nhìn tổng quan hơn về bài toán đó cũng như phương pháp được sử dụng. Mục tiêu của chuyên đề này là giới thiệu phương pháp giải tích và phương pháp tổng hợp với những kĩ thuật đặc trưng của nó thông qua các ví dụ cụ thể thông qua một số bài toán phương trình hàm, bất phương trình đã xuất hiện trong các kỳ thi học sinh giỏi quốc gia và quốc tế. Chuyên đề được bố cục như sau: Trong chương 1, chúng tôi sẽ giới thiệu phương pháp giải tích thông qua hệ thống các bài toán cùng với những kĩ thuật và lưu ý cần thiết khi sử dụng phương pháp này. Trong chương 2, chúng tôi sẽ giới thiệu tới bạn đọc phương pháp tổng hợp thông qua hệ thống gồm mười bài toán khác nhau. Đây là phương pháp thông dụng nhất, nó là sự kết hợp giữa nhiều phương pháp, kĩ thuật khác nhau. Trong chương 3, chúng tôi đưa một số bài toán khác mà phương pháp giải chúng là hai phương pháp nói trên nhưng không kèm theo các nhận xét, phân tích. Trong chương 4, chúng tôi đưa một hệ thống các bài toán không có lời giải dành cho bạn đọc tự luyện tập.