Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề tứ giác nội tiếp

Tài liệu gồm 19 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề tứ giác nội tiếp trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Định nghĩa: Tứ giác nội tiếp đường tròn là tứ giác có bốn đỉnh nằm trên đường tròn đó. 2. Các tính chất: Cho tứ giác ABCD nội tiếp đường tròn (O), khi đó: – Tổng số đo hai góc đối diện bằng 180 độ. – Nếu một tứ giác có tổng số đo hai góc đối diện bằng 180 độ thì tứ giác đó nội tiếp được đường tròn. 3. Một số dấu hiệu nhận biết tứ giác nội tiếp. – Tứ giác có tổng hai góc đối bằng 180 độ. – Tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện. – Tứ giác có bốn đỉnh cách đều một điểm cố định (mà ta có thể xác định được). Điểm đó là tâm của đường tròn ngoại tiếp tứ giác. – Tứ giác có hai đỉnh kề cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc α (dựa vào kiến thức cung chứa góc). B. Bài tập.

Nguồn: toanmath.com

Đọc Sách

Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 1)
Nội dung Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 1) Bản PDF - Nội dung bài viết Nội dung sách "Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 1)" Nội dung sách "Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 1)" Sách được trình bày theo từng dạng toán, giúp học sinh dễ dàng tiếp cận kiến thức. Mỗi bài gồm các phần sau: A. Tóm tắt kiến thức cần học: Giúp học sinh nắm vững những kiến thức cơ bản để giải các dạng toán. B. Phương pháp giải các dạng toán: Hướng dẫn chi tiết cách giải từng bài toán, giúp học sinh áp dụng kiến thức một cách linh hoạt. Các nội dung chính trong sách bao gồm: + Chương 1. Căn thức 1. Căn bậc hai - Căn thức bậc hai 2. Liên hệ giữa phép khai phương và phép nhân, phép chia 3. Biến đổi đơn giản biểu thức chứa căn thức bậc hai 4. Rút gọn biểu thức chứa căn thức bậc hai 5. Căn bậc 3 + Chương 2. Hàm số bậc nhất 1. Khái niệm hàm số 2. Hàm số bậc nhất Qua sơ đồ tư duy Phạm Nguyên, cuốn sách không chỉ giúp học sinh hiểu rõ kiến thức mà còn hướng dẫn cách áp dụng trong thực tế, từ đó giúp học sinh tự tin vượt qua môn Toán trong lớp 9.