Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ôn luyện bồi dưỡng học sinh giỏi hình học không gian - Phan Huy Khải

Nhằm giúp các em học sinh THPT nói chung, các bạn học sinh giỏi Toán nói riêng có thêm tài liệu rèn luyện bồi dưỡng chuyên đề hình học không gian để phục vụ cho kỳ thi THPT Quốc gia và các kỳ thi học sinh giỏi Toán, giới thiệu cuốn sách Ôn luyện bồi dưỡng học sinh giỏi hình học không gian (287 trang). Sách được biên soạn bởi các tác giả: Phan Huy Khải (Chủ biên), Chử Xuân Dũng, Hoàng Văn Phủ, Cù Phượng Anh. Nội dung sách : Chương 1 . Đường thẳng và mặt phẳng trong không gian. Quan hệ song song + Các bài toán đại cương về đường thẳng và mặt phẳng + Các bài toán về thiết diện + Các bài toán về tính song song của đường thẳng và mặt phẳng Chương 2 . Quan hệ vuông góc Các bài toán về khoảng cách + Khoảng cách từ một điểm tới một đường thẳng, hoặc từ một điểm tới mặt phẳng + Khoảng cách giữa hai đường thẳng chéo nhau Các bài toán về góc trong không gian + Bài toán về góc giữa hai đường thẳng chéo nhau + Bài toán về góc giữa đường thẳng và mặt phẳng và góc giữa hai mặt phẳng Sử dụng phương pháp tọa độ để giải các bài toán về khoảng cách và góc trong không gian Thể tích của khối đa diện + Tính thể tích bằng cách sử dụng trực tiếp các công thức về thể tích + Tính thể tích bằng cách sử dụng thể tích của các khối đa diện khác + Bài toán so sánh thể tích + Các bài toán liên quan đến thể tích + Sử dụng phương pháp thể tích để tìm khoảng cách Các bài toán về quan hệ vuông góc + Các bài toán chọn lọc về quan hệ vuông góc + Các bài toán chứng minh tính vuông góc trong các đề thi tuyển sinh môn Toán + Các bài toán về thiết diện liên quan đến tính vuông góc [ads] Chương 3 . Khối tròn xoay Hình cầu + Các bài toán chọn lọc về hình cầu + Nhìn lại các bài toán về hình cầu trong các đề thi tuyển sinh vào đại học cao đẳng Hình trụ, hình nón + Các dạng toán cơ bản + Các bài toán phối hợp giữa hình trụ, hình nón với hình cầu và các khối đa diện Chương 4 . Một số chuyên đề đặc biệt + Hình tứ diện: Tứ diện vuông, Tứ diện trực tâm, Tứ diện gần đều + Các bài toán quỹ tích trong hình học không gian

Nguồn: toanmath.com

Đọc Sách

225 bài toán hình học không gian trong các đề thi thử 2016 - Trần Văn Tài
Tài liệu 225 bài toán hình học không gian trong các đề thi thử 2016 do thầy Trần Văn Tài biên soạn, các bài toán được giải chi tiết. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 4a, cạnh SA vuông góc với mặt phẳng đáy. Góc giữa cạnh SC và mặt phẳng (ABCD) bằng 60 độ, M là trung điểm của BC, N là điểm thuộc cạnh AD sao cho DN = a. Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SB và MN. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a, AD = a√3. Mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Biết đường thẳng SD tạo với mặt đáy một góc 45 độ. Tính thể tích của khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SA và BD. + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Đường thẳng SA vuông góc với mặt đáy. Góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60 độ. 1. Tính thể tích khối chóp S.ABC theo a. 2. Tính khoảng cách giữa hai đường thẳng AC và SB theo a.
Chuyên đề Thể tích - Góc - Khoảng cách trong không gian - Đỗ Bá Thành
Tài liệu gồm 36 trang trình bày các vấn đề về thể tích, góc và khoảng cách trong hình học không gian, tài liệu do tác giả Đỗ Bá Thành biên soạn. + Vấn đề 1: Thể tích khối chóp + Vấn đề 2: Thể tích khối lăng trụ + Vấn đề 3: Góc và các bài toán liên quan + Vấn đề 4: Khoảng cách [ads]
Các bài tập khối đa diện trong đề thi Đại học
Tài liệu gồm 15 trang tuyển tập và giải chi tiết các bài tập khối đa diện trong đề thi Đại học. + Bài 1. Tính thể tích của một khối đa diện + Bài 2. Sử dụng phương pháp thể tích để tìm khoảng cách + Bài 3. Các bài toán về thể tích khối đa diện có kết hợp với việc tìm giá trị lớn nhất và nhỏ nhất + Bài 4. Các bài toán về so sánh thể tích [ads]
Phương pháp giải các bài toán HH không gian trong đề thi Quốc gia
Tài liệu gồm 28 trang với lý thuyết và bài tập hình học không gian, các bài tập được trích dẫn từ các đề thi Đại học – Cao đẳng. 1. Quan hệ song song + Đường thẳng song song + Đường thẳng song song với mặt phẳng + Hai mặt phẳng song song [ads] 2. Quan hệ vuông góc + Đường thẳng vuông góc mặt phẳng + Hai mặt phẳng vuông góc + Khoảng cách giữa hai đường thẳng chéo nhau