Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm - học thêm chuyên đề lũy thừa với số mũ tự nhiên

Tài liệu gồm 29 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề lũy thừa với số mũ tự nhiên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . THỰC HIỆN TÍNH, VIẾT DƯỚI DẠNG LŨY THỪA. Sử dụng công thức. Dạng 2 . SO SÁNH CÁC LŨY THỪA. Để so sánh hai lũy thừa ta thường biến đổi về hai lũy thừa có cùng cơ số hoặc có cùng số mũ (có thể sử dụng các lũy thừa trung gian để so sánh). Với a b m n N ta có: n n a b a b n N. Với A B là các biểu thức ta có 0 n n A B A B. Dạng 3 . TÌM SỐ CHƯA BIẾT TRONG LŨY THỪA. Khi giải bài toán tìm x có luỹ thừa phải: Phương pháp 1: Biến đổi về các luỹ thừa cùng cơ số. Phương pháp 2: Biến đổi về các luỹ thừa cùng số mũ. Phương pháp 3: Biến đổi về dạng tích các lũy thừa. Dạng 4 . MỘT SỐ BÀI TẬP NÂNG CAO VỀ LŨY THỪA. Phương pháp 1: Để so sánh hai luỹ thừa ta thường đưa về so sánh hai luỹ thừa cùng cơ số hoặc cùng số mũ. – Nếu hai luỹ thừa cùng cơ số (lớn hơn 1) thì luỹ thừa nào có số mũ lớn hơn sẽ lớn hơn. – Nếu hai luỹ thừa cùng số mũ (lớn hơn 0) thì lũy thừa nào có cơ số lớn hơn sẽ lớn hơn. Phương pháp 2: Dùng tính chất bắc cầu, tính chất đơn điệu của phép nhân. Một số dạng toán thường gặp: + Dạng 1: So sánh hai số lũy thừa. + Dạng 2: So sánh biểu thức lũy thừa với một số (so sánh hai biểu thức lũy thừa). + Dạng 3: Từ việc so sánh lũy thừa, tìm cơ số (số mũ) chưa biết. + Dạng 4: Sử dụng lũy thừa chứng minh chia hết.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm mở rộng phân số, phân số bằng nhau
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề mở rộng phân số, phân số bằng nhau, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Khái niệm phân số. Với a b Z b 0 ta gọi a b là một phân số trong đó a là tử số (tử) và b là mẫu số (mẫu ) của phân số. Chú ý: Mọi số nguyên đều viết được dưới dạng phân số với mẫu số là 1 1 a a. 2. Hai phân số bằng nhau. Quy tắc bằng nhau của hai phân số a c b d nếu a d b c. 3. Tính chất cơ bản của phân số. Nếu nhân cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số bằng phân số đã cho. Nếu chia cả tử và mẫu của một phân số với cùng một ước chung của chúng thì ta được một phân số bằng phân số đã cho. B. BÀI TẬP TRẮC NGHIỆM DẠNG 1: PHÂN SỐ. DẠNG 2: PHÂN SỐ BẰNG NHAU. DẠNG 3: TÍNH CHẤT CƠ BẢN CỦA PHÂN SỐ. DẠNG 4: RÚT GỌN PHÂN SỐ, PHÂN SỐ TỐI GIẢN.
Tóm tắt lý thuyết và bài tập trắc nghiệm hình có tâm đối xứng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình có tâm đối xứng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT O là trung điểm của đoạn thẳng AB ta nói hai điểm A và B đối xứng nhau qua O. Hình có tâm đối xứng. Tâm đối xứng. Hình bình hành ABCD là hình có tâm đối xứng và giao điểm O của hai đường chéo là tâm đối xứng của hình bình hành ABCD. Đường tròn (O) là hình có tâm đối xứng. Tâm O là tâm đối xứng của đường tròn (O). B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm hình có trục đối xứng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình có trục đối xứng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Khái niệm hình có trục đối xứng. – Cho hình (H). Nếu có một đường thẳng d chia hình (H) thành hai phần bằng nhau mà khi “gấp” hình theo đường thẳng d thấy hai phần đó “chồng khít” lên nhau thì hình (H) được gọi là hình có trục đối xứng. – Đường thẳng d nói trên được gọi là trục đối xứng của hình (H). 2. Chú ý. – Hình có trục đối xứng còn được gọi là hình đối xứng trục. – Không phải hình nào cũng đều có trục đối xứng. – Một hình có thể có một, hai, ba, … trục đối xứng, có thể có vô số trục đối xứng. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm chu vi và diện tích của một số tứ giác đã học
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề chu vi và diện tích của một số tứ giác đã học, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Chu vi và diện tích các hình. a) Hình vuông: Hình vuông ABCD có cạnh bằng a thì: + Chu vi của hình vuông là C a 4. + Diện tích của hình vuông là 2 S a a a. b) Hình chữ nhật: Hình chữ nhật ABCD có chiều dài là a, chiều rộng bằng b thì: + Chu vi của hình chữ nhật là C 2 a b. + Diện tích của hình chữ nhật là S a b. c) Hình thoi: Hình thoi ABCD có độ dài cạnh là a và độ dài hai đường chéo là m và n thì: + Chu vi của hình thoi là C a 4. + Diện tích của hình thoi là 2 1 S m n. d) Hình bình hành: Hình bình hành ABCD có độ dài hai cạnh là a, b và độ dài đường cao ứng với cạnh a là h thì: + Chu vi của hình bình hành là C 2 a b. + Diện tích của hình bình hành là S a h. e) Hình thang cân: Hình thang cân ABCD có độ dài hai cạnh đáy là a, b; độ dài cạnh bên là c và độ dài đường cao ứng với cạnh đáy là h thì: + Chu vi của hình thang cân là C a b 2c. + Diện tích của hình bình thang cân là 2 S a b h. 2. Các dạng toán thường gặp. Dạng 1: Tính diện tích các hình đã học. Áp dụng công thức tính diện tích của các hình. Dạng 2: Tính một yếu tố của hình khi biết chu vi, diện tích của hình đó. Từ công thức tính chu vi, diện tích các hình, thay các đại lượng đã biết vào công thức rồi rút ra đại lượng cần tính. Dạng 3: Bài toán thực tế. Sắp xếp được mối liên hệ giữa các kiến thức đã học để giải bài toán. B. BÀI TẬP TRẮC NGHIỆM