Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2020 - 2021 phòng GDĐT Long Biên - Hà Nội

Thứ Sáu ngày 21 tháng 05 năm 2021, phòng Giáo dục và Đào tạo quận Long Biên, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2020 – 2021, nhằm giúp các em học sinh lớp 9 ôn tập, chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán sắp tới. Đề khảo sát chất lượng Toán 9 năm 2020 – 2021 phòng GD&ĐT Long Biên – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2020 – 2021 phòng GD&ĐT Long Biên – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc lập hệ phương trình: Một mảnh vườn hình chữ nhật có diện tích là 224 m2. Nếu giảm chiều dài đi 1m và tăng chiều rộng thêm 1m thì mảnh vườn trở thành hình vuông. Tính chiều dài, chiều rộng của mảnh vườn. + Một hình trụ có bán kính đường tròn đáy là 5cm, chiều cao là 15cm. Hãy tính diện tích toàn phần của hình trụ (lấy pi = 3,14). + Cho nửa đường tròn (O), đường kính AB = 2R. Gọi C là điểm cố định thuộc đoạn thẳng OB (C khác O và B). Dựng đường thẳng d vuông góc với AB tại điểm C, cắt nửa đường tròn (O) tại điểm M. Trên cung nhỏ MB lấy điểm N bất kỳ (N khác M và B), tia AN cắt đường thẳng d tại điểm F, tia BN cắt đường thẳng d tại điểm E. Đường thẳng AE cắt nửa đường tròn (O) tại điểm D (D khác A). 1) Chứng minh bốn điểm B, C, D, E cùng thuộc một đường tròn. 2) Chứng minh ba điểm B, F, D thẳng hàng và AF.AN + BF.BD = 4R2. 3) Gọi I là tâm đường tròn ngoại tiếp tam giác AEF. Chứng minh rằng điểm I luôn nằm trên một đường thẳng cố định khi điểm N thay đổi trên cung nhỏ MB (N khác M và B).

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 lần 1 năm 2023 - 2024 phòng GDĐT Việt Yên - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh môn Toán 9 lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Việt Yên, tỉnh Bắc Giang (mã đề 358). Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2023 – 2024 phòng GD&ĐT Việt Yên – Bắc Giang : + Nhân dịp kỉ niệm 10 năm thành lập, cửa hàng GNH có thực hiện chương trình giảm giá cho mặt hàng X là 20% và mặt hàng Y là 15% so với giá niêm yết. Bà Hiền mua 2 món hàng X và 1 món hàng Y thì phải trả số tiền là 395000 đồng. Ngày cuối cùng của chương trình, cửa hàng thay đổi bằng cách giảm giá mặt hàng X là 30% và mặt hàng Y là 25% so với giá niêm yết. Vào ngày hôm đó, cô Định mua 3 món hàng X và 2 món hàng Y thì trả số tiền là 603000 đồng. Tính giá niêm yết của mỗi món hàng X và Y (Giá niêm yết là giá ghi trên món hàng nhưng chưa thực hiện giảm giá). + Cho tam giác ABC nhọn, nội tiếp đường tròn (O;R) và AB AC. Ba đường cao AD, BE, CF của tam giác ABC (D, E, F là chân các đường cao) đồng quy tại điểm H. Kẻ đường kính AK của đường tròn (O;R). Gọi M là hình chiếu vuông góc của C trên đường thẳng AK. a) Chứng minh rằng tứ giác ACMD nội tiếp đường tròn. b) Chứng minh rằng MD song song với BK. c) Giả sử hai đỉnh B, C cố định trên đường tròn (O;R) và đỉnh A di động trên cung lớn BC của đường tròn (O;R). Chứng minh rằng đường thẳng MF luôn đi qua một điểm cố định. + Công thức 3 h 04 x biểu diễn mối tương quan giữa cân nặng x (tính bằng kg) và chiều cao h (tính bằng m) của một con hươu cao cổ. Một con hươu cao cổ có chiều cao 2,56 m thì có cân nặng (kết quả làm tròn đến chữ số thập phân thứ nhất) là?
Đề khảo sát Toán 9 tháng 1 năm 2024 trường THCS Nghĩa Tân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 tháng 1 năm học 2023 – 2024 trường THCS Nghĩa Tân, quận Cầu Giấy, thành phố Hà Nội. Trích dẫn Đề khảo sát Toán 9 tháng 1 năm 2024 trường THCS Nghĩa Tân – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Thầy Tuấn dự định dùng 840 nghìn đồng mua bút và vở để làm phần thưởng cho những học sinh có thành tích xuất sắc trong học tập môn Toán học kì I. Thực tế khi đi mua hàng (mua bút và mua vở) gặp đúng dịp siêu thị khuyến mãi giảm 20% giá thành cho mỗi chiếc bút, giảm 15% giá thành cho mỗi quyển vở nên tổng số tiền thầy phải trả cho siêu thị chỉ còn là 684 nghìn đồng. Hỏi lúc đầu, thầy Tuấn dự định dùng bao nhiêu tiền để trả cho mỗi loại hàng? + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = x + 3. a) Vẽ đường thẳng (d) trên mặt phẳng tọa độ Oxy. b) Tìm tọa độ hai điểm A và B thuộc đường thẳng (d) lần lượt có hoành độ là −2 và 1. Vẽ điểm A và B trên mặt phẳng tọa độ Oxy. c) Tính diện tích tam giác OAB. + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O, có đường cao AD và BE cắt nhau tại H. 1) Chứng minh bốn điểm H, E, C, D cùng thuộc một đường tròn. 2) Tia BE cắt (O) tại P. Chúng minh AHP cân tại A. 3) Gọi M là trung điểm BC. Lấy điểm K đối xứng với điểm H qua điểm M. Chứng minh K thuộc đường tròn (O) và ME vuông góc AP.
Đề khảo sát Toán 9 tháng 1 năm 2024 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 1 năm học 2023 – 2024 trường THCS Nguyễn Trường Tộ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 25 tháng 01 năm 2024.
Đề kiểm tra Toán 9 tháng 1 năm 2024 hệ thống giáo dục Archimedes School - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng môn Toán 9 tháng 1 năm học 2023 – 2024 hệ thống giáo dục Archimedes School, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 25 tháng 01 năm 2024. Trích dẫn Đề kiểm tra Toán 9 tháng 1 năm 2024 hệ thống giáo dục Archimedes School – Hà Nội : + Một người dự định đi từ thành phố A đến thành phố B với vận tốc và thời gian đã định. Nếu người đó đi từ A với vận tốc lớn hơn vận tốc dự định 5 km/h thì sẽ đến B sớm hơn dự định 30 phút. Nếu người đó đi từ A với vận tốc nhỏ hơn vận tốc dự định 4 km/h thì sẽ đến B muộn hơn dự định 30 phút. Hỏi vận tốc và thời gian dự định ban đầu của người đó? + Cho parabol (P): y = x2 và đường thẳng d: y = x + 2. a) Vẽ (P) và (d) trên cùng mặt phẳng tọa độ xOy. b) Tìm tọa độ giao điểm của (P) và (d) bằng phép toán. + Cho đường tròn tâm O đường kính AB. Vẽ đường thẳng d là tiếp tuyến với (O) tại A, trên d lấy điểm C sao cho AC < AB. Vẽ cát tuyển CDE tới (O) (CDE nằm giữa CA và CO). Nối BD cắt CO tại M. Gọi H là hình chiếu của A lên CO. 1) Chứng minh: 4 điểm A, D, H, M cùng thuộc một đường tròn. 2) Chứng minh CA2 = CD.CE. 3) Kéo dài tia EO cắt (O) tại K (K khác E). Chứng minh CDH đồng dạng COE và ba điểm A, M, K thẳng hàng.