Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu bồi dưỡng học sinh giỏi hình học không gian

Tài liệu gồm 103 trang, được sưu tầm và tổng hợp bởi nhóm tác giả Tạp Chí Và Tư Liệu Toán Học, tuyển tập các chuyên đề bồi dưỡng học sinh giỏi hình học không gian. Chương 1 . Phương pháp Vector. I. Cơ sở của phương pháp vector. II. Các bài toán ứng dụng vector. + Bài toán 1. Chứng minh đẳng thức vec tơ. + Bài toán 2. Chứng minh ba vec tơ đồng phẳng và bốn điểm đồng phẳng. + Bài toán 3. Tính độ dài đoạn thẳng. + Bài toán 4. Sử dụng điều kiện đồng phẳng của bốn điểm để giải bài toán hình không gian. + Bài toán 5. Tính góc giữa hai đường thẳng. Chương 2 . Các khối tứ diện đặc biệt. Trong chương trình hình học không gian bậc THPT có lẽ khối đa diện được nhắc tới nhiều nhất và cũng đồng thời được khai thác rất nhiều trong các đề thi thử, HSG, THPT Quốc gia chính là khối tứ diện. Chắc hẳn nhiều bạn đã từng gặp qua các bài toán về tứ diện mà các giả thiết của nó trông rất lạ, hoặc một số bài toán tính thể tích mà trong đó giả thiết liên quan tới góc hoặc tới cạnh chẳng hạn, và chúng ta chưa có cách giải quyết chúng. Vì thế trong chương này tôi sẽ cùng bạn đọc tìm hiểu các bài toán liên quan tới tứ diện từ dễ đến khó để có thể giải quyết hoàn toàn vấn đề này. I. Khối tứ diện tổng quát. + Công thức tính đường trọng tuyến. + Một số công thức về diện tích. + Một số công thức về thể tích của tứ diện. [ads] II. Các khối tứ diện đặc biệt. + Khối tứ diện vuông. + Khối tứ diện gần đều. + Tính chất của tứ diện trực tâm. Chương 3 . Cực trị hình học không gian. Cực trị và bất đẳng thức nói chung luôn là các bài toán khó yêu cầu người làm bài phải có kỹ năng tốt về bất đẳng thức cũng như kiến thức vững về hàm số cũng như đạo hàm. Trong chương này chúng ta sẽ cùng đi tìm hiểu lớp bài toán cực trị hình không gian cũng như bất đẳng thức trong hình không gian. I. Các kiến thức cơ bản về bất đẳng thức. + Bất đẳng thức Cauchy – AM – GM. + Bất đẳng thức Cauchy – Schwarz. + Bất đẳng thức Minkowski. II. Phương pháp giải các bài toán cực trị. + Bước 1. Biểu diễn đối tượng đề bài yêu cầu qua một (hoặc hai) đại lượng chưa biết ta gọi là biến x. + Bước 2. Tìm điều kiện của biến x dựa vào giả thiết đã cho. + Bước 3. Khảo sát hàm số theo biến x để tìm ra kết quả của bài toán.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề mặt nón, mặt trụ và mặt cầu
Nối tiếp chuyên đề khối đa diện mà đã đăng tải từ trước đó, thầy Nguyễn Văn Vinh và thầy Lê Đình Hùng  (Omega Group) tiếp tục chia sẻ tài liệu chuyên đề mặt nón, mặt trụ và mặt cầu, giúp học sinh học tốt chương trình Hình học 12 chương 2 và ôn thi THPT Quốc gia môn Toán. Khái quát nội dung tài liệu chuyên đề mặt nón, mặt trụ và mặt cầu: BÀI 1 : MẶT NÓN – HÌNH NÓN – KHỐI NÓN. 1. Lý thuyết + Mặt tròn xoay. + Mặt nón, hình nón và khối nón tròn xoay. + Các công thức tính diện tích và thể tích của hình nón. + Thiết diện của mặt phẳng với hình nón. 2. Bài tập + Bài toán 1. Tính diện tích – thể tích hình nón, khối nón. + Bài toán 2. Các bài toán về thiết diện của mặt phẳng qua đỉnh của hình nón. + Bài toán 3. Hình nón ngoại tiếp, nội tiếp hình chóp đều. + Bài toán 4. Bài toán hình nón cụt. [ads] BÀI 2 : MẶT TRỤ TRÒN XOAY. 1. Lý thuyết + Định nghĩa mặt trụ tròn xoay. + Hình trụ tròn xoay và khối trụ tròn xoay. + Thiết diện của mặt phẳng với hình trụ. + Các công thức tính diện tích và thể tích của hình trụ. 2. Bài tập + Bài toán 1. Thể tích của tứ diện tạo bởi hai đường kính chéo nhau nằm ở hai đáy. + Bài toán 2. Góc giữa đường thẳng nối hai tâm và đường thẳng nối hai điểm trên hai đường tròn của đáy. + Bài toán 3. Khoảng cách giữa đường thẳng nối hai tâm của đáy và đường thẳng nối hai điểm trên hai đường tròn của đáy. + Bài toán 4. Thể tích của khối trụ ngoại tiếp hình lăng trụ tam giác đều có thể tích là V. + Bài toán 5. Diện tích xung quanh của hình trụ khi nội tiếp trong hình lăng trụ tứ giác đều có diện tích xung quanh là S. + Bài toán 6. Mối liên hệ giữa diện tích xung quanh, toàn phần và thể tích khối trụ trong bài toán tối ưu. BÀI 3 : MẶT CẦU VÀ KHỐI CẦU. 1. Lý thuyết + Định nghĩa mặt cầu và khối cầu. + Đường kinh tuyến và vĩ tuyến của mặt cầu. + Vị trí tương đối giữa mặt cầu và mặt phẳng. + Vị trí tương đối giữa mặt cầu và đường thẳng. + Diện tích và thể tích của mặt cầu. + Mặt cầu ngoại tiếp và nội tiếp hình đa diện, hình trụ và hình nón. 2. Bài tập + Bài toán 1. Mặt cầu ngoại tiếp hình hộp chữ nhật, hình lập phương. + Bài toán 2. Mặt cầu ngoại tiếp hình lăng trụ đứng có đáy nội tiếp được trong đường tròn. + Bài toán 3. Mặt cầu ngoại tiếp hình chóp có các đỉnh nhìn đoạn thẳng nối hai đỉnh còn lại dưới một góc vuông. + Bài toán 4. Mặt cầu ngoại tiếp hình chóp đều. + Bài toán 5. Mặt cầu ngoại tiếp hình chóp có một cạnh bên vuông góc với đáy. + Bài toán 6. Mặt cầu ngoại tiếp hình chóp có một mặt bên vuông góc với đáy.
Lý thuyết và bài tập mặt nón - mặt trụ - mặt cầu - Phùng Hoàng Em
Chuyên đề gồm 15 trang được biên soạn bởi thầy giáo Phùng Hoàng Em tóm tắt lý thuyết cần nắm và tuyển chọn các bài tập trắc nghiệm chủ đề mặt nón – mặt trụ – mặt cầu giúp học sinh khối 12 học tốt chương trình Hình học 12 chương 2. Khái quát nội dung tài liệu lý thuyết và bài tập mặt nón – mặt trụ – mặt cầu – Phùng Hoàng Em: Bài 1 . MẶT NÓN – KHỐI NÓN A. KIẾN THỨC CẦN NHỚ 1. Mặt nón – hình nón – khối nón: Khi quay SM quanh trục cố định SO, ta được mặt nón. Khi quay đường gấp khúc SMO quanh trục cố định SO, ta được hình nón. Hình nón và phần không gian bên trong nó tạo thành khối nón. 2. Các công thức tính: Các đại lượng cần nhớ: đường sinh, đường cao, bán kính đáy; Diện tích xung quanh; Diện tích đáy; Diện tích toàn phần; Thể tích. 3. Khối nón cụt: Đường cao; Bán kính đáy lớn; Bán kính đáy nhỏ; Thể tích. B. PHƯƠNG PHÁP GIẢI TOÁN : Gồm 12 ví dụ. C. BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN : Gồm 25 câu hỏi và bài toán trắc nghiệm có đáp án. [ads] Bài 2 . MẶT TRỤ – KHỐI TRỤ A. LÝ THUYẾT CẦN NHỚ 1. Xoay hình chữ nhật ABCD quanh trục AB: Đoạn CD tạo thành mặt trụ. Đường gấp khúc ADCB tạo thành hình trụ. Hình trụ và phần không gian bên trong nó tạo thành khối trụ. 2. Các đại lượng cần nhớ: Bán kính đáy; Đường sinh; Đường cao. 3. Công thức tính: Diện tích xung quanh; Diện tích đáy; Diện tích toàn phần; Thể tích. B. CÁC DẠNG TOÁN THƯỜNG GẶP Dạng 1. Xác định các yếu tố cơ bản của hình trụ. Dạng 2. Thiết diện của hình trụ cắt bởi mặt phẳng. Dạng 3. Xoay hình phẳng tạo thành khối trụ. Dạng 4. Khối trụ ngoại tiếp và nội tiếp. C. BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN : Gồm 30 câu hỏi và bài toán trắc nghiệm có đáp án. Xem thêm : Lý thuyết và bài tập khối đa diện và thể tích khối đa diện – Phùng Hoàng Em
Trắc nghiệm VD - VDC nón - trụ - cầu - Đặng Việt Đông
Với mục đích hỗ trợ các em học sinh khối 12 trong quá trình học tập nâng cao các dạng toán trong chương trình Hình học 12 chương 2 – nón – trụ – cầu, ôn tập hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, thầy Đặng Việt Đông biên soạn cuốn tài liệu trắc nghiệm vận dụng – vận dụng cao chuyên đề nón – trụ – cầu. Tài liệu trắc nghiệm VD – VDC nón – trụ – cầu – Đặng Việt Đông gồm 94 trang với các bài tập trắc nghiệm nón – trụ – cầu ở mức độ vận dụng và vận dụng cao, được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường, sở GD&ĐT, đề tham khảo – đề minh họa – đề chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo, các bài tập về nón – trụ – cầu được phân tách thành các dạng toán cụ thể, có đáp án và lời giải chi tiết. [ads] Các dạng toán được đề cập trong tài liệu trắc nghiệm VD – VDC nón – trụ – cầu – Đặng Việt Đông: CHỦ ĐỀ 1 . MẶT NÓN TRÒN XOAY VÀ KHỐI NÓN. + Dạng 1. Thiết diện của hình nón cắt bởi một mặt phẳng. + Dạng 2. Bài toán liên quan đến thiết diện qua đỉnh của hình nón. + Dạng 3. Bài toán hình nón ngoại tiếp và nội tiếp hình chóp. + Dạng 4. Bài toán hình nón cụt. + Dạng 5. Bài toán hình nón tạo bởi phần còn lại của hình tròn sau khi cắt bỏ đi hình quạt. CHỦ ĐỀ 2 . MẶT TRỤ TRÒN XOAY VÀ KHỐI TRỤ. + Dạng 1. Thiết diện của hình trụ cắt bởi một phẳng. + Dạng 2. Thể tích khối tứ diện có hai cạnh là đường kính hai đáy. + Dạng 3. Xác định góc khoảng cách. + Dạng 4. Xác định mối liên hệ giữa diện tích xung quanh, toàn phần và thể tích khối trụ trong bài toán tối ưu. + Dạng 5. Hình trụ ngoại tiếp, nội tiếp một hình lăng trụ đứng. CHỦ ĐỀ 3 . MẶT CẦU VÀ KHỐI CẦU. + Dạng 1. Mặt cầu ngoại tiếp, nội tiếp khối đa diện. + Dạng 2. Cực trị về khối cầu và mặt tròn xoay. + Dạng 3. Tổng hợp về mặt tròn xoay. CHỦ ĐỀ 4 . ỨNG DỤNG THỰC TẾ. Xem thêm : Trắc nghiệm VD – VDC khối đa diện và thể tích khối đa diện – Đặng Việt Đông
Các dạng toán nón - trụ - cầu thường gặp trong kỳ thi THPTQG
Nhằm hỗ trợ các em học sinh lớp 12 trong quá trình học tập chương trình Hình học 12 chương 2 và ôn tập thi THPT Quốc gia môn Toán năm học 2019 – 2020, giới thiệu đến các em tài liệu tuyển tập các dạng toán nón – trụ – cầu thường gặp trong kỳ thi THPTQG. Tài liệu gồm 127 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển chọn các bài toán trắc nghiệm khối tròn xoay, mặt nón, mặt trụ, mặt cầu có đáp án và lời giải chi tiết, các bài tập được trích từ các đề thi THPT Quốc gia môn Toán các năm 2017 – 2018 – 2019. Mục lục tài liệu các dạng toán nón – trụ – cầu thường gặp trong kỳ thi THPTQG: CHỦ ĐỀ 1 . HÌNH NÓN – KHỐI NÓN PHẦN A . CÂU HỎI Dạng 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện (Trang 1). Dạng 2. Thể tích (Trang 3). Dạng 3. Khối tròn xoay nội, ngoại tiếp khối đa diện (Trang 6). Dạng 4. Bài toán thực tế (Trang 8). Dạng 5. Bài toán cực trị (Trang 9). PHẦN B . ĐÁP ÁN THAM KHẢO Dạng 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện (Trang 10). Dạng 2. Thể tích (Trang 17). Dạng 3. Khối tròn xoay nội, ngoại tiếp khối đa diện (Trang 24). Dạng 4. Bài toán thực tế (Trang 29). Dạng 5. Bài toán cực trị (Trang 32). [ads] CHỦ ĐỀ 2 . HÌNH TRỤ – KHỐI TRỤ PHẦN A . CÂU HỎI Dạng 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện (Trang 1). Dạng 2. Thể tích (Trang 3). Dạng 3. Khối tròn xoay nội, ngoại tiếp khối đa diện (Trang 4). Dạng 4. Bài toán thực tế (Trang 5). Dạng 5. Bài toán cực trị (Trang 8). PHẦN B . ĐÁP ÁN THAM KHẢO Dạng 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện (Trang 9). Dạng 2. Thể tích (Trang 14). Dạng 3. Khối tròn xoay nội, ngoại tiếp khối đa diện (Trang 15). Dạng 4. Bài toán thực tế (Trang 19). Dạng 5. Bài toán cực trị (Trang 23). [ads] CHỦ ĐỀ 3 . MẶT CẦU – KHỐI CẦU PHẦN A . CÂU HỎI Dạng 1. Diện tích xung quanh, bán kính (Trang 1). Dạng 2. Thể tích (Trang 2). Dạng 3. Khối cầu nội tiếp, ngoại tiếp khối đa diện (Trang 3). Dạng 3.1 Khối cầu nội tiếp, ngoại tiếp khối lăng trụ (Trang 3). Dạng 3.2 Khối cầu nội tiếp, ngoại tiếp khối chóp (Trang 4). Dạng 3.2.1 Khối chóp có cạnh bên vuông góc với đáy (Trang 4). Dạng 3.2.2 Khối chóp có mặt bên vuông góc với đáy (Trang 7). Dạng 3.2.3 Khối chóp đều (Trang 8). Dạng 3.2.4 Khối chóp khác (Trang 8). Dạng 4. Bài toán thực tế, cực trị (Trang 10). PHẦN B . ĐÁP ÁN THAM KHẢO Dạng 1. Diện tích xung quanh, bán kính (Trang 11). Dạng 2. Thể tích (Trang 12). Dạng 3. Khối cầu nội tiếp, ngoại tiếp khối đa diện (Trang 13). Dạng 3.1 Khối cầu nội tiếp, ngoại tiếp khối lăng trụ (Trang 13). Dạng 3.2 Khối cầu nội tiếp, ngoại tiếp khối chóp (Trang 17) Dạng 3.2.1 Khối chóp có cạnh bên vuông góc với đáy (Trang 17) Dạng 3.2.2 Khối chóp có mặt bên vuông góc với đáy (Trang 29). Dạng 3.2.3 Khối chóp đều (Trang 36). Dạng 3.2.4 Khối chóp khác (Trang 39). Dạng 4. Bài toán thực tế, cực trị (Trang 49). CHỦ ĐỀ 4 . MỘT SỐ BÀI TOÁN TỔNG HỢP KHỐI TRÒN XOAY