Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

124 bài tập trắc nghiệm mặt nón, hình nón và khối nón - Hứa Lâm Phong

Tài liệu gồm 14 trang tuyển chọn 124 bài toán trắc nghiệm chủ đề mặt nón, hình nón và khối nón. Trích dẫn tài liệu : + Cho tứ diện OABC có OA, OB, OC đôi một vuông góc. Trong đó OA = 4a, OB = OC = 3a√2. Một mặt phẳng song song với mặt phẳng (OBC) cắt AO, AB, AC lần lượt tại M, N, P. Gọi W là tâm đường tròn ngoại tiếp tam giác MNP. Gọi S là hình chiếu vuông góc của W lên (OBC). Tính thể tích V lớn nhất của khối nón có đỉnh là S, đáy là đường tròn ngoại tiếp tam giác MNP. + Cắt bỏ hình quạt tròn AOB từ một mảnh các tông hình tròn bán kính R rồi dán hai bán kính OA và OB của hình quạt tròn còn lại với nhau để được một cái phễu có dạng của một hình tròn. Gọi x là góc ở tâm của quạt tròn dùng làm phễu 0 < x < 2π. Tìm thể tích lớn nhất của hình nón. [ads] + Người ta đặt được vào một hình nón hai khối cầu có bán kính lần lượt là 1dm và 2dm sao cho các khối cầu đều tiếp xúc với mặt xung quanh của hình nón, hai khối cầu tiếp xúc với nhau và khối cầu lớn tiếp xúc với đáy của hình nón. Bán kính đáy của hình nón đã cho là? + Một bình đựng nước dạng hình nón (không có đáy), đựng đầy nước. Người ta thả vào đó một khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước trà ra ngoài là 18 dm3. Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm trong nước. Tính thể tích nước còn lại trong bình. + Cho hình trụ có đường kính và chiều cao là 4. Một đường thẳng Δ thay đổi luôn cắt trục của trụ và tạo với trục góc 30 độ đồng thời luôn cắt hai hình tròn đáy. Quay Δ quanh trục của trụ ta được một khối tròn xoay. Giá trị lớn nhất và nhỏ nhất của thể tích khối đó là?

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn giải một số bài tập số phức mức độ vận dụng cao - Phạm Minh Tuấn
Tài liệu gồm 27 trang được biên soạn bởi tác giả Phạm Minh Tuấn hướng dẫn giải 65 bài toán số phức hay và khó, các bài toán số phức liên quan đến min – max, bất đẳng thức … đây là các bài toán thường xuất hiện trong các đề thi thử THPT Quốc gia môn Toán nhằm phân loại điểm 9 – 10. Trích dẫn tài liệu : + Gọi S là tập hợp các số phức z thỏa mãn |z – i| ≥ 3 và |z – 2 – 2i| ≤ 5. Kí hiệu z1, z2 là hai số phức thuộc S và là những số phức có môđun lần lượt nhỏ nhất và lớn nhất. Tính giá trị của biểu thức P = |z2 + 2.z1|. + Cho số phức w và hai số thực a, b. Biết rằng w + i và 2w – 1 là hai nghiệm của phương trình z^2 + az + b = 0. Tính a + b. + Cho số phức z thỏa mãn |z| = 1. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = |z + 1| + |z^2 – z + 1|. Tính giá trị của M.n. [ads]
Các dạng bài tập số phức điển hình - Lê Bá Bảo, Vũ Ngọc Huyền
Tài liệu gồm 34 trang trình bày phương pháp giải, ví dụ mẫu và bài tập trắc nghiệm các dạng toán số phức điển hình trong chương trình Giải tích 12 chương 4, tài liệu được biên soạn bởi các tác giả Lê Bá Bảo và Vũ Thị Ngọc Huyền. Nội dung tài liệu được chia thành các phần: A. Lý thuyết I. Xây dựng tập hợp số phức và các khái niệm liên quan. II. Các phép toán với số phức. III. Giới thiệu một số tính năng tính toán số phức bằng máy tính Casio. [ads] B. Một số dạng toán về số phức I. Các bài toán liên quan tới khái niệm số phức. II. Dạng toán xác định tập hợp điểm biểu diễn số phức. III. Biểu diễn hình học của số phức quỹ tích phức. C. Bài tập rèn luyện kỹ năng 1. Phần thực, phần ảo của số phức. 2. Biểu diễn hình học của số phức. 3. Các phép toán với số phức, mô đun số phức và số phức liên hợp. 4. Phương trình phức.
Một số cách giải và kiểm tra kết quả bài tập số phức bằng máy tính cầm tay Casio - Trần Thanh Tuyền
Tài liệu gồm 8 trang hướng một số cách giải, kiểm tra kết quả bài tập số phức bằng máy tính cầm tay Casio, tài liệu cũng đưa ra những sai lầm cần tránh khi dùng máy tính cầm tay để giải. Nội dung chính gồm các phần: 1. Tìm số phức – xác định phần thực, phần ảo của số phức + Dạng 1: Không chứa z và liên hợp của z + Dạng 2: Có chứa z và liên hợp của z [ads] 2. Tìm tập hợp điểm biểu diễn số phức + Dạng 1: Chỉ dùng cho các đáp án có dạng là các đồ thị đường thẳng + Dạng 2: Làm được cho tất cả các loại đồ thị đường 3. Giải phương trình trên C + Dạng 1: Căn bậc 2 của số phức + Dạng 2: Phương trình không chứa đơn vị ảo i + Dạng 3: Phương trình chứa đơn vị ảo i
110 bài tập trắc nghiệm số phức - Nguyễn Tấn Phong
Tài liệu gồm 8 trang với phần tóm tắt lý thuyết, công thức tính cơ bản và tuyển chọn 110 bài toán trắc nghiệm số phức. Trích dẫn tài liệu : + Gọi A là điểm biểu diễn của số phức z = 2 + 5i và B là điểm biểu diễn của số phức z’ = -2 + 5i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành B. Hai điểm A và B đối xứng với nhau qua trục tung C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x3 [ads] + Gọi A là điểm biểu diễn của số phức z = 3 + 2i và B là điểm biểu diễn của số phức z’ = 2 + 3i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành B. Hai điểm A và B đối xứng với nhau qua trục tung C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x + Trong mặt phẳng (Oxy), cho A, B, C là 3 điểm lần lượt biểu diễn các số phức: 3 + 3i, -2 + i, 5 – 2i. Tam giác ABC là tam giác gì? A. Một tam giác cân B. Một tam giác đều C. Một tam giác vuông D. Một tam giác vuông cân