Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

50 dạng toán phát triển đề minh họa THPT QG 2020 môn Toán lần 2

Nội dung 50 dạng toán phát triển đề minh họa THPT QG 2020 môn Toán lần 2 Bản PDF - Nội dung bài viết Tài liệu ôn thi THPT Quốc Gia 2020 môn Toán lần 2 Tài liệu ôn thi THPT Quốc Gia 2020 môn Toán lần 2 Tài liệu ôn thi THPT Quốc Gia 2020 môn Toán lần 2 là cuốn sách dày 1391 trang, được biên soạn bởi tập thể quý thầy, cô giáo thuộc nhóm GeoGebra Pro. Cuốn sách tập trung vào việc giúp học sinh ôn tập và chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán trong năm học 2019-2020. Đặc điểm nổi bật của cuốn sách là việc tổng hợp 50 dạng toán phát triển đề thực hành minh họa cho kỳ thi THPT Quốc Gia 2020 môn Toán. Mỗi dạng toán được chia thành ba phần: kiến thức cần nhớ, bài tập mẫu và bài tập tương tự, đều đi kèm với đáp án và lời giải chi tiết. Cuốn sách bao gồm các dạng toán từ lớp 1 đến lớp 50, bao quát nhiều chủ đề khác nhau như hoán vị, chỉnh hợp, tổ hợp, cấp số cộng, cấp số nhân, phương trình mũ, logarit, hàm số mũ, lôgarít, nguyên hàm, thể tích khối lăng trụ, diện tích mặt cầu, và nhiều dạng toán khác. Đây sẽ là nguồn tư liệu hữu ích không chỉ cho học sinh THPT đang chuẩn bị cho kỳ thi quan trọng mà còn cho giáo viên môn Toán cũng như bất kỳ ai quan tâm đến việc nâng cao kiến thức toán học của mình.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề ôn thi THPT Quốc gia môn Toán - Lư Sĩ Pháp (Tập 1)
Nhằm giúp các em học sinh có tài liệu tự học môn Toán, tôi biên soạn tập tài liệu ôn thi THPTQG của lớp 12. Nội dung của cuốn tài liệu bám sát chương trình chuẩn và chương trình nâng cao về môn Toán đã được Bộ Giáo dục và Đào tạo quy định. Nội dung tập 1 gồm: + Chuyên đề 1: Ứng dụng của đạo hàm + Chuyên đề 2: Lũy thừa – Mũ – Logarit + Chuyên đề 3: Hình học không gian tổng hợp Mỗi chuyên đề gồm 3 phần: Lý thuyết cần nắm, bài tập trắc nghiệm và đáp án.
Kỹ thuật và sai lầm khi sử dụng máy tính bỏ túi trong giải toán - Đoàn Văn Bộ, Huỳnh Anh Kiệt
Quyển sách Máy tính bỏ túi – Kĩ thuật và sai lầm giới thiệu sơ bộ các dạng toán quen thuộc thuộc chương trình lớp 12, giúp các em học sinh nắm vững một số kĩ thuật cơ bản việc sử dụng máy tính của mình trong các bài tập và bài thi, đặc biệt là bài thi Trung học Phổ thông Quốc gia sắp tới. Quyển sách này gồm có các chuyên đề sau: + Chuyên đề 1: Số phức và các bài toán liên quan + Chuyên đề 2: Phương pháp tọa độ trong không gian Oxyz + Chuyên đề 3: Nguyên hàm – tích phân + Chuyên đề 4: Mũ – logarit + Chuyên đề 5: Khảo sát hàm số – một số vấn đề liên quan Tài liệu tuyển chọn những câu trắc nghiệm tốt để phục vụ cho các em học sinh rèn luyện thao tác, kĩ năng bấm máy tính qua các chuyên đề, dạng toán trong những chuyên đề đó. [ads]
40 bài toán tối ưu thực tế có lời giải chi tiết - Nguyễn Minh Đức
Tài liệu gồm 30 trang với 40 bài toán ứng dụng thực tiễn chọn lọc có đáp án và lời giải chi tiết, tài liệu do tác giả Nguyễn Minh Đức biên soạn.
Giải chi tiết 214 bài toán trắc nghiệm ứng dụng thực tiễn - Trần Thông
Tài liệu gồm 120 trang với 214 bài toán ứng dụng thực tiễn có đáp án và lời giải chi tiết. Trích dẫn tài liệu : + Một công ty muốn làm một đường ống dẫn từ một điểm A trên bờ đến một điểm B trên một hòn đảo. Hòn đảo cách bờ biển 6km. Giá để xây đường ống trên bờ là 50.000USD mỗi km, và 130.000USD mỗi km để xây dưới nước. B’ là điểm trên bờ biển sao cho BB’ vuông góc với bờ biển. Khoảng cách từ A đến B’ là 9km. Vị trí C trên đoạn AB’ sao cho khi nối ống theo ACB thì số tiền ít nhất. Khi đó C cách A một đoạn bằng? [ads] + Có một tấm gỗ hình vuông cạnh 200 cm. Cắt một tấm gỗ có hình tam giác vuông, có tổng của một cạnh góc vuông và cạnh huyền bằng hằng số từ tấm gỗ trên sao cho tấm gỗ hình tam giác vuông có diện tích lớn nhất. Hỏi cạnh huyền của tấm gỗ này là bao nhiêu? + Nhân ngày phụ nữ Việt Nam 20 -10 năm 2017, ông A quyết định mua tặng vợ một món quà và đặt nó vào trong một chiếc hộp có thể tích là 32 (đvtt) có đáy hình vuông và không có nắp. Để món quà trở nên thật đặc biệt và xứng đáng với giá trị của nó ông quyết định mạ vàng cho chiếc hộp, biết rằng độ dạy lớp mạ tại mọi điểm trên hộp là như nhau. Gọi chiều cao và cạnh đáy của chiếc hộp lần lượt là h, x. Để lượng vàng trên hộp là nhỏ nhất thì giá trị của h, x phải là?