Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 20 năm đề thi tuyển sinh vào môn Toán sở GD ĐT Bình Định

Nội dung Tuyển tập 20 năm đề thi tuyển sinh vào môn Toán sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Tuyển tập 20 năm đề thi tuyển sinh vào môn Toán sở GD ĐT Bình Định Tuyển tập 20 năm đề thi tuyển sinh vào môn Toán sở GD ĐT Bình Định Tài liệu này bao gồm 32 trang, được biên soạn bởi các tác giả: Đào Xuân Luyện, Huỳnh Duy Thủy, Nguyễn Công Nhã, Nguyễn Duy Chiến, Trần Văn Chớ, Cao Hoàng Hạ, Trần Đức An. Được tổng hợp từ các đề thi tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo tỉnh Bình Định trong vòng 20 năm qua, từ năm học 2000 – 2001 đến năm học 2019 – 2020. Danh sách các đề thi trong tài liệu gồm: Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2000 – 2001 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2001 – 2002 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2002 – 2003 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2003 – 2004 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2004 – 2005 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2005 – 2006 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2006 – 2007 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2007 – 2008 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2008 – 2009 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2009 – 2010 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2010 – 2011 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2011 – 2012 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2012 – 2013 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2013 – 2014 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2014 – 2015 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2015 – 2016 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2016 – 2017 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2017 – 2018 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2018 – 2019 sở GD&ĐT Bình Định. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2019 – 2020 sở GD&ĐT Bình Định.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán lần 1 vào lớp 10 năm 2022 - 2023 phòng GDĐT Tây Hồ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán lần 1 tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Tây Hồ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 05 tháng 04 năm 2022. Trích dẫn đề thi thử Toán lần 1 vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Tây Hồ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Tháng thứ nhất hai đội sản xuất làm được 1100 sản phẩm. Sang tháng thứ hai, đội I làm vượt mức 15% và đội II làm vượt mức 20% so với tháng thứ nhất, vì vậy cả hai đội đã làm được 1295 sản phẩm. Hỏi trong tháng thứ nhất mỗi đội làm bao nhiêu sản phẩm? + Người ta thả một cục đá vào cốc thủy tinh hình trụ có chứa nước, đá chìm hoàn toàn xuống phần chứa nước trong cốc. Em hãy tính thể tích cục đá đó biết diện tích đáy của cốc nước hình trụ là 16,5 cm2 và nước trong cốc dâng thêm 80 mm. + Cho phương trình x2 – mx – m – 1 = 0 (m là tham số). Tìm các giá trị của tham số m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn: x1^3 + x2^3 = -1.
Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT Lục Nam - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lục Nam, tỉnh Bắc Giang; đề gồm 02 trang với 20 câu trắc nghiệm (3.0 điểm) và 04 câu tự luận (7.0 điểm), thời gian học sinh làm bài thi là 120 phút (không kể thời gian giao đề). Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Lục Nam – Bắc Giang : + Hưởng ứng phong trào quyên góp sách ủng hộ các bạn học sinh vùng cao, đợt I hai trường A và B ủng hộ được 1370 quyển sách. Đợt II, số sách trường A ủng hộ tăng 20%, số sách trường B ủng hộ tăng 15% so với đợt I, do đó tổng số sách hai trường ủng hộ đợt II là 1608 quyển. Tính số sách mỗi trường đã ủng hộ trong đợt I. + Cho đường tròn (O), từ điểm A nằm ngoài đường tròn, kẻ hai tiếp tuyến AB, AC với (O) (B và C là tiếp điểm). Kẻ CD vuông góc AB (D thuộc AB), CD cắt (O) tại điểm thứ hai là M. Kẻ ME vuông góc AC (E thuộc AC), MF vuông góc BC (F thuộc BC). 1. Chứng minh: tứ giác MDBF nội tiếp. 2. Chứng minh: DF = DM.DC. 3. Gọi H là giao điểm của MB và FD, I là giao điểm của MC và EF. Trên đoạn AC lấy điểm K sao cho CK = HF. Chứng minh ba điểm H, I, K thẳng hàng. + Cho (O;R) và đường thẳng a, gọi d là khoảng cách từ O đến a. Phát biểu nào sau đây là sai? A. Nếu d < R thì đường thẳng a cắt (O;R). B. Nếu d = R thì đường thẳng a tiếp xúc với (O;R). C. Nếu d > R thì đường thẳng a không cắt (O;R). D. Nếu d = R thì đường thẳng a đi qua tâm O của (O;R).
Đề thi thử Toán vào lớp 10 lần 2 năm 2022 - 2023 trường Lương Thế Vinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 lần 2 năm học 2022 – 2023 trường THCS&THPT Lương Thế Vinh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 26 tháng 03 năm 2022. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2022 – 2023 trường Lương Thế Vinh – Hà Nội : + Chiều cao của một ngọn hải đăng là bao nhiêu? Biết rằng khi tia nắng mặt trời chiếu qua đỉnh của ngọn hải đăng hợp với mặt đất một góc 35° thì bóng của ngọn hải đăng trên mặt đất dài 20m (làm tròn kết quả đến chữ số thập phân thứ nhất). + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Nếu giảm chiều rộng của một mảnh vườn hình chữ nhật đi 3m và tăng chiều dài thêm 8m thì diện tích mảnh vườn giảm đi 54m. Nếu tăng chiều rộng của mảnh vườn thêm 2m và giảm chiều dài đi 4m thì diện tích mảnh vườn tăng thêm 32m². Hãy tính các kích thước của mảnh vườn. + Cho tam giác ABC nhọn, các đường cao BM và CN cắt nhau tại H. 1. Chứng minh tứ giác AMHN nội tiếp một đường tròn và xác định vị trí tâm I của đường tròn đó. 2. Gọi D là một điểm thuộc cạnh BC (D khác B và D khác C). Đường tròn ngoại tiếp tam giác BDN và đường tròn ngoại tiếp tam giác CDM cắt nhau tại điểm thứ hai là E. Chứng minh E thuộc đường tròn ngoại tiếp tam giác AMN. 3. Gọi K là một điểm di động trên nửa đường tròn đường kính BC (cung chứa điểm M) và Q là chân đường vuông góc hạ từ K xuống BC. Tìm vị trí điểm K để tổng KQ + BQ đạt giá trị lớn nhất.
Đề thi thử Toán tuyển sinh 10 năm 2022 2023 trường THCS Chu Văn An Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi thử môn Toán tuyển sinh vào lớp 10 năm học 2022 – 2023 trường THCS Chu Văn An, huyện Nga Sơn, tỉnh Thanh Hoá; kỳ thi được diễn ra vào Chủ Nhật ngày 27 tháng 03 năm 2022. Trích dẫn đề thi thử Toán tuyển sinh 10 năm 2022 – 2023 trường THCS Chu Văn An – Thanh Hoá : + Cho hai đường thẳng (d): y = -x + m + 2 và (d’): y = (m2 – 2)x + 3. Tìm m để (d) và (d’) song song với nhau. + Cho phương trình x2 + 5x + m – 2 = 0 (1) với m là tham số a. Giải phương trình (1) khi m = 6 b. Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm x1, x2 sao cho biểu thức S = (x1 – x2)2 + 8x1x2 đạt giá trị lớn nhất. + Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O). Hai đường cao BE và CF của tam giác ABC cắt nhau tại H a) Chứng minh bốn điểm B C E F cùng thuộc một đường tròn b) Chứng minh đường thẳng OA vuông góc với đường thẳng EF c) Gọi K là trung điểm của đoạn thẳng BC. Đường thẳng AO cắt đường thẳng BC tại điểm I, đường thẳng EF cắt đường thẳng AH tại điểm P. Chứng minh tam giác APE đồng dạng với tam giác AIB và đường thẳng KH song song với đường thẳng IP.