Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 năm 2022 - 2023 trường THCS Lê Quý Đôn - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 trường THCS Lê Quý Đôn, quận Cầu Giấy, thành phố Hà Nội; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 25 tháng 02 năm 2023. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 trường THCS Lê Quý Đôn – Hà Nội : + Cho parabol (P): y = ax2 a) Tìm hệ số a biết (P) đi qua điểm (-1;1). b) Với giá trị tìm được của a, tìm tọa độ các giao điểm A, B của (P) và đường thẳng (d): y = −2x + 3 và tính diện tích tam giác OAB. + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, hai tổ công nhân phải làm 320 sản phẩm trong một thời gian quy định. Nhưng khi thực hiện do tổ I đã sản xuất vượt mức kế hoạch 15%, tổ II làm giảm 10% so với kế hoạch nên cả hai tổ làm được 333 sản phẩm. Tính số sản phẩm mỗi tổ phải làm theo kế hoạch. + Cho điểm M nằm bên ngoài đường tròn (O; R). Từ M kẻ hai tiếp tuyến MA, MB với đường tròn đó (A và B là tiếp điểm). Qua A kẻ đường thẳng song song với MB cắt đường tròn (O) tại điểm thứ hai là C; MC cắt đường tròn (O) tại điểm D (D khác C). a) Chứng minh bốn điểm M, A, O, B cùng thuộc một đường tròn. b) Chứng minh 2 MA MD MC. c) Tia AD cắt MB tại E. Chứng minh BE2 = ED.EA và E là trung điểm của MB. d) Qua O kẻ đường thẳng song song với AB cắt tia MA, MB lần lượt tại P và Q. Xác định vị trí của điểm M để diện tích tam giác MPQ nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 9 tháng 9 năm 2021 trường THCS Tô Hoàng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng Toán 9 tháng 9 năm 2021 trường THCS Tô Hoàng – Hà Nội; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 02 tháng 10 năm 2021. Trích dẫn đề khảo sát chất lượng Toán 9 tháng 9 năm 2021 trường THCS Tô Hoàng – Hà Nội : + Cho hàm số y m xm 1 2 (với tham số m ≠ −1) có đồ thị là đường thẳng (d). 1. Tìm m để đồ thị hàm số đi qua điểm M 2. Khi m = 1 a. Vẽ đường thẳng (d) trên hệ trục tọa độ Oxy b. Tìm tọa độ giao điểm của đường thẳng (d) với đường thẳng (d1): y = 3x + 1. + Để đo khoảng cách giữa hai địa điểm A và B ở hai bờ một con sông, người ta đặt máy đo ở vị trí C sao cho AC AB. Biết AC = 20m và 750. Tính khoảng cách AB (làm tròn đến mét). + Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH H BC. a) Cho biết AB = 3cm; BC = 5cm. Tính độ dài các đoạn AC, HA và số đo góc HAC (góc làm tròn đến độ). b) Qua B kẻ đường thẳng vuông góc với BC, cắt tia CA tại D. Kẻ AE vuông góc với BD tại E. Chứng minh: 2 DE DB DA và 2 DE DB CH CB AD AC CD. c) Lấy I đối xứng với D qua B. Kẻ IK ⊥ CD tại K. Chứng minh.
Đề khảo sát Toán 9 năm 2021 - 2022 trường THCS Lê Ngọc Hân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng Toán 9 năm học 2021 – 2022 trường THCS Lê Ngọc Hân, quận Hai Bà Trưng, thành phố Hà Nội, đề thi có lời giải chi tiết; kỳ thi được diễn ra vào ngày 16 tháng 09 năm 2021. Trích dẫn  đề khảo sát Toán 9 năm 2021 – 2022 trường THCS Lê Ngọc Hân – Hà Nội : + Biểu thức sau đây xác định với giá trị nào của x (học sinh chỉ ghi đáp số). + Cho hai biểu thức P x x và x x 1 1 Q x xx với x > 0. a) Tính giá trị của biểu thức P khi x = 3. b) Chứng minh rằng 1 1 x Q x. c) So sánh Q với 1. d) Biết P S Q. Tìm giá trị nhỏ nhất của biểu thức S. e) Tìm giá trị của x thỏa mãn Sx x x 4 6 3. + Thực hiện phép tính.
Đề kiểm tra Toán 9 năm 2020 - 2021 trường THCS Tam Khương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra Toán 9 năm học 2020 – 2021 trường THCS Tam Khương – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Bảy ngày 05 tháng 06 năm 2021. Trích dẫn đề kiểm tra Toán 9 năm 2020 – 2021 trường THCS Tam Khương – Hà Nội : + Một hộp sữa hình trụ có đường kính đáy là 12 cm, chiều cao là 10 cm. Người ta dùng giấy làm tem mác dán xung quanh vỏ hộp sữa. Tính diện tích giấy làm tem mác cần dùng để làm 1 lốc sữa (6 hộp) như vậy (không tính phần mép nối, lấy pi = 3,14). + Cho hàm số y m x m 4 4 (m là tham số). a) Tìm m để hàm số đã cho là hàm số bậc nhất đồng biến trên R. b) Chứng minh rằng với mọi giá trị của m thì đồ thị hàm số đã cho luôn cắt parabol 2 P y x tại hai điểm phân biệt. Gọi 1 2 x x là hoành độ các giao điểm, tìm m sao cho x x x x 1 1 2 2 1 1 18. + Cho đường tròn tâm O đường kính AB. Kẻ dây cung CD vuông góc với AB tại H (H nằm giữa A và O, H khác A và O). Lấy điểm G thuộc CH (G khác C và H), tia AG cắt đường tròn tại E khác A. a) Chứng minh tứ giác BEGH là tứ giác nội tiếp. b) Gọi K là giao điểm của hai đường thẳng BE và CD. Chứng minh: KC.KD = KE.KB. c) Đoạn thẳng AK cắt đường tròn tại F khác A. Chứng minh G là tâm đường tròn nội tiếp HEF.
Đề khảo sát Toán 9 năm 2020 - 2021 trường THCS Phan Chu Trinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng môn Toán lớp 9 năm học 2020 – 2021 trường THCS Phan Chu Trinh, quận Ba Đình, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Sáu ngày 04 tháng 06 năm 2021. Trích dẫn đề khảo sát Toán 9 năm 2020 – 2021 trường THCS Phan Chu Trinh – Hà Nội : + Một hộp sữa hình trụ có thể tích bằng 3 83 cm. Hãy so sánh thể tích hộp sữa hình trụ này với thể tích hình cầu có đường kính 8cm. + Cho 2 P y x và đường thẳng d y m x m 2 2 (m là tham số). a) Tìm m để đường thẳng (d) cắt (P) tại hai điểm phân biệt A và B. b) Gọi hoành độ của A và B lần lượt là 1 2 x x. Tìm m để 2 1 2 x m x 2 12. + Cho đường tròn (O;R) và dây cung BC R 3 cố định. Một điểm A chuyển động trên cung lớn BC sao cho tam giác ABC có ba góc nhọn, AM là đường kính của (O). Kẻ các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh các tứ giác BCEF, AEHF nội tiếp. b) Chứng minh tứ giác BHCM là hình bình hành và tính độ dài của đoạn AH theo R. c) Kẻ DP vuông góc với BE tại P, đường thẳng qua P và vuông góc với đường kính AM cắt CF tại Q. Chứng minh rằng tứ giác DPHQ nội tiếp và PQ < HD.