Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập mũ và logarit trong các đề thi thử môn Toán 2018 có đáp án - Nguyễn Nhanh Tiến (Phần 1)

Tài liệu gồm 14 trang tuyển chọn 106 bài toán chủ đề mũ và logarit trong các đề thi thử môn Toán 2018, đề khảo sát chất lượng giữa HK1 Toán 12 và một số bài toán chọn lọc, tài liệu được tổng hợp và biên soạn bởi thầy Nguyễn Hữu Nhanh Tiến, các bài tập đều có đáp án. Trích dẫn tài liệu : + (Toán học tuổi trẻ Tháng 10 2017). Cho hai hàm số f(x) = log2 x, g(x) = 2^x. Xét các mệnh đề sau: (I). Đồ thị hai hàm số đối xứng nhau qua đường thẳng y = x (II). Tập xác định của hai hàm số trên là R (III). Đồ thị hai hàm số cắt nhau tại đúng 1 điểm (IV). Hai hàm số đều đồng biến trên tập xác định của nó Có bao nhiêu mệnh đề đúng trong các mệnh đề trên? A. 2   B. 3   C. 1   D. 4 [ads] + (Khảo sát giữa kì 1 Chuyên ĐH Vinh). Cho α là một số thực dương khác 1. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau: 1. Hàm số y = logα x có tập xác định là D = (0; +∞) 2. Hàm số y = logα x là hàm đơn điệu trên khoảng (0; +∞) 3. Đồ thị hàm số y = logα x và đồ thị hàm số y = α^x đối xứng nhau qua đường thẳng y = x 4. Đồ thị hàm số y = logα x nhận Ox là một tiệm cận A. 4   B. 1   C. 3   D. 2 + (Giữa học kì 1 lớp 12 Chuyên Lê Hồng Phong – Nam Định). Cho hai hàm số y = f(x) = loga x và y = g(x) = a^x. Xét các mệnh đề sau: I. Đồ thị hàm số f(x) và g(x) luôn cắt nhau tại một điểm II. Hàm số f(x) + f(x) đồng biến khi a > 1, nghịch biến khi 0 < a < 1 III. Đồ thị hàm số f(x) nhận trục Oy làm tiệm cận IV. Chỉ có đồ thị hàm số f(x) có tiệm cận Số mệnh đề đúng là: A. 1   B. 2   C. 3   D. 4 Lưu ý :  Bạn đọc có thể tìm kiếm lời giải chi tiết bài tập mũ và logarit có trong tài liệu này tại chuyên mục đề thi thử môn Toán.

Nguồn: toanmath.com

Đọc Sách

Một số bài toán phương trình logarit khác cơ số - Huỳnh Đức Khánh - Đại học Quy Nhơn
Phương trình logarit với cơ số khác nhau luôn là vấn đề gây khó dễ cho học sinh khi gặp phải trong các đề thi. Học sinh thường lúng túng khi biến đổi, gặp khó khăn để đưa về cùng cơ số hoặc đưa về các phương trình cơ bản. Tôi viết tài liệu xin đóng góp vài bài mẫu về vấn đề này, bao gồm các phương pháp: + Đổi cơ số + Đặt ẩn phụ để đưa về phương trình mũ + Biến đổi tương đương + Đánh giá hai vế
Một số phương pháp giải phương trình mũ và logarit - THPT chuyên Quảng Bình
Một số phương pháp giải phương trình mũ và logarit – THPT chuyên Quảng Bình
Chuyên đề phương trình mũ và logarit - Lưu Huy Thưởng
Chuyên đề phương trình mũ và logarit – Lưu Huy Thưởng
Chuyên đề trắc nghiệm bất phương trình logarit
Tài liệu gồm 23 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bất phương trình logarit, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. 1. Bất phương trình logarit cơ bản. 2. Các dạng toán và phương pháp giải bất phương trình logarit thường gặp. + Dạng 1. Phương pháp đưa về cùng cơ số. + Dạng 2. Phương pháp đặt ẩn phụ. + Dạng 3. Sử dụng tính đơn điệu của hàm số, phân tích nhân tử, đánh giá. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.