Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 - 2021 sở GDĐT Bắc Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề thi học sinh giỏi Toán 9 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bắc Giang; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2021. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bắc Giang : + Cho tam giác ABC AB BC CA ngoại tiếp đường tròn tâm I. Lấy E và F lần lượt trên các đường thẳng AC và AB sao cho CB CE BF đồng thời chúng nằm về cùng phía với A so với đường thẳng BC. Các đường thẳng BE và CF cắt nhau tại G. a) Chứng minh rằng bốn điểm C, E, I và G cùng nằm trên một đường tròn. b) Trên đường thẳng qua G và song song với AC lấy điểm H sao cho HG AF đồng thời H nằm khác phía với C so với đường thẳng BG. Chứng minh rằng 1 2 EHG CAB. + Cho đường tròn (O;R) và hai điểm A, B cố định nằm ngoài đường tròn sao cho OA R 2. Điểm C nằm trên đoạn thẳng AO sao cho 2 R OC và điểm M thay đổi trên đường tròn. Giá trị nhỏ nhất của MA + 2MB bằng? + Cho đường tròn tâm O có bán kính OA R, dây cung BC vuông góc với OA tại trung điểm M của đoạn thẳng OA, kẻ tiếp tuyến với đường tròn tại B, tiếp tuyến đó cắt OA tại E. Độ dài đoạn thẳng BE là?

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2012 - 2013 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho tam giác nhọn ABC BC a CA b AB c. Chứng minh rằng: 222 a b c bc cosA. + Cho nửa đường tròn (O) đường kính BC. Trên tia đối của tia CB lấy điểm A, qua A kẻ tiếp tuyến AF với đường tròn (O) ( F là tiếp điểm). Tia AF cắt tia tiếp tuyến Bx của nửa đường tròn (O) tại D (tia tiếp tuyến Bx nằm trong nửa mặt phẳng bờ BC chứa nửa đường tròn (O)). Gọi H là giao điểm của BF với DO; K là giao điểm thứ hai của DC với nửa đường tròn (O). a) Chứng minh rằng AO.AB = AF.AD. b) Chứng minh DHK DCO. c) Kẻ OM vuông góc với BC (M thuộc đoạn AD). Chứng minh rằng 1 BD DM DM AM. + Cho hai số thực dương x, y thay đổi thỏa mãn điều kiện 3 4 x y. Tìm giá trị nhỏ nhất của biểu thức 1 1 A x xy.