Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn

Nội dung Chuyên đề góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn Bản PDF - Nội dung bài viết Chuyên đề về góc có đỉnh ở bên trong và bên ngoài đường tròn Chuyên đề về góc có đỉnh ở bên trong và bên ngoài đường tròn Tài liệu này bao gồm 39 trang, được soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức quan trọng về chuyên đề góc có đỉnh ở bên trong và bên ngoài đường tròn. Tài liệu cung cấp phân loại, hướng dẫn giải các dạng bài tập tự luận và trắc nghiệm trong chương trình Hình học lớp 9, chương 3 bài số 5. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT Định lí 1: Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn. Định lí 2: Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn. II. CÁC DẠNG BÀI MINH HỌA Dạng 1: Chứng minh hai góc hoặc hai đoạn thẳng bằng nhau. Phương pháp giải: Sử dụng hai định lý về số đo của góc có đỉnh bên trong đường tròn và góc có đỉnh bên ngoài đường tròn. Dạng 2: Chứng minh hai đường thẳng song song hoặc vuông góc bằng cách chứng minh các đẳng thức cho trước và áp dụng hai định lý về số đo của góc có đỉnh bên trong và bên ngoài đường tròn. III. BÀI TẬP VỀ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN Đây là tài liệu hữu ích giúp học sinh hiểu rõ hơn về chuyên đề góc có đỉnh ở bên trong và bên ngoài đường tròn, từ đó nâng cao khả năng giải bài tập và phát triển tư duy logic trong quá trình học tập.

Nguồn: sytu.vn

Đọc Sách

Giải bài toán bằng cách lập phương trình - hệ phương trình
Tài liệu gồm 76 trang, hướng dẫn phương pháp giải bài toán bằng cách lập phương trình – hệ phương trình, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. LOẠI 1 : BÀI TOÁN LIÊN QUAN TỚI DIỆN TÍCH, TAM GIÁC, TỨ GIÁC. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán, dựa vào điều kiện tìm kết quả thích hợp, trả lời, nêu rõ đơn vị của đáp số. II. Các công thức liên quan + Diện tích tam giác vuông = nữa tích hai cạnh góc vuông. + Diện tích hình chữ nhật = dài nhân rộng. + Diện tích hình vuông = cạnh nhân cạnh. B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ LOẠI 2 : BÀI TOÁN NĂNG SUẤT. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán, tìm kết quả thích hợp, trả lời, nêu rõ đơn vị của đáp số. II. Các công thức liên quan N = 1/t; t = 1/N; CV = N.t. Trong đó: N: là năng suất làm việc; t: là thời gian hoàn thành công việc; 1: là công việc cần thực hiện; CV: số công việc thực hiện trong thời gian t. B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ LOẠI 3 : BÀI TOÁN LIÊN QUAN TỚI CHUYỂN ĐỘNG. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán tìm kết quả thích hợp, trả lời, nên rõ đơn vị của đáp số. II. Các công thức liên quan + Quãng đường = Vận tốc . Thời gian. + v_xuôi = v_thực + v_nước. + v_ngược = v_thực – v_nước. + v_xuôi – v_ngược = 2v_nước. B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ LOẠI 4 : BÀI TOÁN LIÊN QUAN TỚI CÔNG VIỆC – NƯỚC CHẢY. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán, tìm kết quả thích hợp, trả lời, nêu rõ đơn vị của đáp số. II. Các công thức liên quan + Quãng đường = Vận tốc . Thời gian. + v_xuôi = v_thực + v_nước. + v_ngược = v_thực – v_nước. + v_xuôi – v_ngược = 2v_nước. B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ LOẠI 5 : CÁC BÀI TOÁN KHÁC. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán, tìm kết quả thích hợp, trả lời, nêu rõ đơn vị của đáp số. II. Các lưu ý thêm + Toán nồng độ dung dịch: Biết rằng m lít chất tan trong M lít dung dịchthì nồng độ phàn trăm là m/M.100%. + Toán nhiệt lượng: m Kg nước giảm t0C thì toả ra một nhiệt lượng Q = m.t (Kcal). m Kg nước tăng t0C thì thu vào một nhiệt lượng Q = m.t (Kcal). + Toán lãi suất: 1 n A A r n với An: vốn sau n chu kỳ (năm, tháng, …); A: vốn ban đầu; n số chu kỳ (năm, tháng,…). B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ
Hàm số, đồ thị và sự tương giao - Dương Minh Hùng
Tài liệu gồm 28 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng và hướng dẫn giải các dạng toán về chủ đề hàm số, đồ thị và sự tương giao, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. A. Tóm tắt lý thuyết I. Hàm số bậc nhất 1. Khái niệm hàm số bậc nhất. 2. Tính chất. 3. Đồ thị của hàm số y = ax + b (a khác 0). 4. Cách vẽ đồ thị hàm số y = ax + b (a khác 0). 5. Vị trí tương đối của hai đường thẳng. 6. Hệ số góc của đường thẳng y = ax + b. 7. Một số phương trình đường thẳng đặc biệt. II. Hàm số bậc hai 1. Khái niệm hàm số bậc hai. 2. Tính chất 3. Đồ thị của hàm số y = ax2 (a khác 0). 4. Cách vẽ đồ thị hàm số y = ax2 (a khác 0). 5. Quan hệ giữa Parabol y = ax2 (a khác 0) và đường thẳng y = mx + n (m khác  0). B. Phân dạng toán cơ bản Dạng toán 1. Vẽ đồ thị hàm số. Dạng toán 2. Tìm tọa độ giao điểm của đường thẳng và Parabol. Dạng toán 3. Tìm phương trình đường thẳng, phương trình Parabol. Dạng toán 4. Tìm điều kiện của tham số m thỏa mãn yêu cầu cho trước. C. Bài tập rèn luyện
Phương trình bậc hai, hệ thức Vi-ét và ứng dụng - Dương Minh Hùng
Tài liệu gồm 26 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng và hướng dẫn giải các dạng toán về chủ đề phương trình bậc hai, hệ thức Vi-ét và ứng dụng, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. A. Tóm tắt lý thuyết 1. Công thức nghiệm. 2. Công thức nghiệm thu gọn. 3. Định lí Vi-ét. 4. Ứng dụng Vi-ét (nhẫm nghiệm đặc biệt của phương trình bậc hai). 5. Các ứng dụng vào giải toán chứa tham số. B. Phân dạng toán cơ bản Dạng 1. Giải phương trình quy về bậc nhất. Dạng 2. Giải phương trình bậc hai. Dạng 3. Tính giá trị biểu thức nghiệm dùng Vi-ét. Dạng 4. Toán tham số m với ứng dụng định lý Vi-ét. C. Bài tập rèn luyện
Các phép toán về căn thức - Dương Minh Hùng
Tài liệu gồm 19 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng và hướng dẫn giải các dạng toán về chủ đề căn thức, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. A. Tóm tắt lý thuyết 1. Căn bậc hai số học. 2. Liên hệ giữa phép nhân với phép khai phương. 3. Liên hệ giữa phép chia với phép khai phương. 4. Biến đổi đơn giản biểu thức chứa căn thức bậc hai. B. Phân dạng toán cơ bản Dạng 1. Tìm điều kiện để biểu thức có chứa căn thức có nghĩa. Dạng 2. Tính giá trị biểu thức chứa căn. Dạng 3. Rút gọn biểu thức chứa căn. Dạng 4. Rút gọn và tính giá trị biểu thức chứa căn. C. Bài tập rèn luyện