Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM

Nội dung Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Bản PDF - Nội dung bài viết Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Sytu xin trân trọng giới thiệu đến quý thầy cô và các em học sinh lớp 8, đề thi chọn học sinh giỏi lần thứ 2 môn Toán lớp 8 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo thành phố Thủ Đức, thành phố Hồ Chí Minh. Kỳ thi sẽ diễn ra vào ngày 18 tháng 03 năm 2023. Trích dẫn từ Đề học sinh giỏi lần 2 Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Thủ Đức - TP HCM: Cho tam giác ABC có ba góc nhọn (AB < AC) và ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: Tam giác BFC đồng dạng với tam giác BDA và góc BFD = góc ACB. b) Tia EF cắt đường thẳng BC tại K. Chứng minh: CD.FK = CK.FD. c) Gọi M là trung điểm của BC. Vẽ đường thẳng qua M vuông góc với HM, cắt AB, AD, AC tại P, Q, R. Chứng minh: PQ = QR. Hai địa điểm A và B cách nhau 200 km. Xe ô tô và xe máy khởi hành cùng lúc từ A và B đi ngược chiều. Mỗi xe đi với vận tốc khác nhau và gặp nhau tại điểm C cách A 120 km. Nếu xe ô tô khởi hành sau một giờ so với xe máy, hỏi chúng sẽ gặp nhau tại điểm D cách C bao nhiêu km? Biết vận tốc của xe ô tô lớn hơn 20 km/h so với xe máy. Cho tứ giác ABCD có các trung điểm M, N, P, Q lần lượt của các cạnh AB, BC, CD, DA. Điểm I nằm trong tứ giác ABCD. Tính diện tích tứ giác ABCD biết S(AIQM) = 32 (cm2), S(BMIN) = 50 (cm2) và S(DPIQ) = 20 (cm2). Nội dung đề thi trên cung cấp cho các em học sinh những bài toán thú vị và bổ ích, giúp họ rèn luyện kỹ năng giải quyết vấn đề, logic suy luận và tính toán trong môn học Toán. Chúc các em thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Thiệu Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thiệu Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Thiệu Hóa – Thanh Hóa : + Tìm số x, y nguyên thỏa mãn: 22 3 2 2 2 2 x y xy x xy x y xy y y 3 3 3 6 6 70. + Tìm tất cả các số chính phương gồm 4 chữ số biết rằng khi ta thêm 1 đơn vị vào chữ số hàng nghìn, thêm 3 đơn vị vào chữ số hàng trăm, thêm 5 đơn vị vào chữ số hàng chục, thêm 3 đơn vị vào chữ số hàng đơn vị, ta vẫn được một số chính phương. + Cho đoạn thẳng AB cố định có O là trung điểm. Trên đường thẳng vuông góc với AB tại A, lấy điểm C sao cho AC AO. Kẻ AK vuông góc CO tại K, điểm D đối xứng với A qua K. Đường thẳng qua O vuông góc với AB cắt BD tại E. Kẻ DH vuông góc với AB tại H, DH cắt BC tại I. a. Chứng minh: CD = EO b. Chứng minh: KI đi qua trung điểm của BD. c.Kẻ IN vuông góc với AC tại N, kẻ DM vuông góc với AC tại M, DM cắt CO tại J. Chứng minh tứ giác JNOI là hình bình hành. Khi C di chuyển (sao cho AC AO). Tính giá trị nhỏ nhất của 2 2 NI OJ.
Đề thi chọn HSG huyện Toán 8 năm 2021 - 2022 phòng GDĐT Sơn Hòa - Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Sơn Hòa, tỉnh Phú Yên; kỳ thi được diễn ra vào thứ Bảy ngày 16 tháng 04 năm 2022.
Đề thi Olympic Toán 8 năm 2021 - 2022 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn đề thi Olympic Toán 8 năm 2021 – 2022 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Cho n là số tự nhiên có hai chữ số. Tìm n biết n + 2 và 2n đều là các số chính phương. + Cho hình vuông ABCD. Qua C kẻ đường thẳng d cắt tia AD, tia AB lần lượt tại E, F (AE < AF). Gọi M là giao điểm của DF và BC; N là giao điểm của BE và DC. a) Chứng minh: MC АВ b) Chứng minh MN // EF c) Kẻ AI vuông góc với EF (I EF). Gọi K là giao điểm BE và DF. Chứng minh A, K, I thẳng hàng. + Giả sử mỗi điểm trong mặt phẳng được tô bởi một trong hai màu xanh và đỏ. Chứng minh tồn tại một hình chữ nhật có các đỉnh được tô cùng màu.
Đề thi học sinh giỏi Toán 8 năm 2021 - 2022 trường THCS Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2021 – 2022 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 24 tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2021 – 2022 trường THCS Trần Mai Ninh – Thanh Hóa : + Cho tam giác ABC nhọn (AB < AC). Các đường cao AE, BF cắt nhau tại H. Gọi M trung điểm của BC, qua H vẽ đường thẳng a vuông góc với HM, a cắt AB, AC lần lượt tại I và K. a) Chứng minh ABC đồng dạng EFC. b) Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH, AB theo thứ tự tại N và D. Chứng minh NC = ND và HI = HK. + Cho tam giác PQR cân tại P. Trên cạnh PQ vẽ T sao cho QT = 2PT. Vẽ QG vuông góc với RT. Gọi M là trung điểm của PG. Tỉnh góc PMQ. + Cho ba số dương a b c với abc = 1. Tìm giá trị lớn nhất của biểu thức M?