Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

26 chuyên đề bồi dưỡng học sinh giỏi Đại số 8

Tài liệu gồm 388 trang, tuyển tập 26 chuyên đề bồi dưỡng học sinh giỏi Đại số 8. Trong mỗi chuyên đề, bao gồm kiến thức cần nhớ, một số ví dụ và bài tập vận dụng có đáp số và hướng dẫn giải chi tiết. Chuyên đề 1. Phép nhân các đa thức. Chuyên đề 2. Các hằng đẳng thức đáng nhớ. Chuyên đề 3. Phân tích đa thức thành nhân tử. Chuyên đề 4. Hằng đẳng thức mở rộng. Chuyên đề 5. Phân tích đa thức thành nhân. Chuyên đề 6. Số chính phương. Chuyên đề 7. Chia đa thức cho đa thức. Chuyên đề 8. Phép chia hết trên tập hợp số nguyên. Chuyên đề 9. Phân thức đại số. Tính chất phân thức đại số. Chuyên đề 10. Rút gọn phân thức. Chuyên đề 11. Phép cộng và phép trừ các phân thức đại số. Chuyên đề 12. Phép nhân và phép chia các phân thức đại số. Chuyên đề 13. Biến đổi các phân thức hữu tỉ. Chuyên đề 14. Chứng minh đẳng thức đại số. Chuyên đề 15. Phương trình. Phương trình bậc nhất một ẩn. Chuyên đề 16. Phương trình đưa được về dạng ax + b = 0 (hay ax = -b). Chuyên đề 17. Phương trình tích. Chuyên đề 18. Phương trình chứa ẩn ở mẫu thức. Chuyên đề 19. Giải toán bằng cách lập phương trình. Chuyên đề 20. Phương trình nghiệm nguyên. Chuyên đề 21. Bất đẳng thức. Chuyên đề 22. Bất phương trình bậc nhất một ẩn. Chuyên đề 23. Bất phương trình dạng tích, thương. Chuyên đề 24. Phương trình. Bất phương trình chứa dấu giá trị tuyệt đối. Chuyên đề 25. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức. Chuyên đề 26. Đồng dư thức.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề diện tích đa giác
Tài liệu gồm 06 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích đa giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT Để tính diện tích đa giác, ta thường chia đa giác đó thành các tam giác, các tứ giác tính được diện tích rồi tính tổng các diện tích đó; hoặc tạo ra một đa giác nào đó có chứa đa giác ấy rồi tính hiệu các diện tích. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích đa giác. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 2. Tính diện tích của đa giác bất kì. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 3. Dựng tam giác có diện tích bằng diện tích một đa giác. Phương pháp giải: Thường kẻ đường thẳng song song với một đường thẳng cho trước để tạo ra một tam giác mới có diện tích bằng diện tích một tam giác cho trước. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích hình thoi
Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình thoi, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. KIẾN THỨC CƠ BẢN + Diện tích tứ giác có hai đường chéo vuông góc bằng nửa tích hai đường chéo. + Diện tích hình thoi bằng nửa tích hai đường chéo hoặc bằng tích của một cạnh với chiều cao. II. MỘT SỐ DẠNG BÀI Dạng 1: Tính diện tích của tứ giác có hai đường chéo vuông góc. Dạng 2: Tính diện tích hình thoi. Dạng 3: Tìm diện tích lớn nhất (nhỏ nhất) của một hình. III. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích hình thang
Tài liệu gồm 08 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình thang, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT + Diện tích hình thang bằng nửa tích của tổng hai đáy với chiều cao. + Diện tích hình bình hành bằng tích của một cạnh với chiều cao ứng với cạnh đó. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích hình thang. Phương pháp giải: Sử dụng công thức tính diện tích hình thang. Dạng 2. Tính diện tích hình bình hành. Phương pháp giải: Sử dụng công thức tính diện tích hình bình hành. Dạng 3. Tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích. Phương pháp giải: Dùng công thức tính diện tích dẫn đến điều kiện về vị trí điểm, thường liên quan đến khoảng cách từ một điểm đến một đường thẳng. Dạng 4. Tìm diện tích lớn nhất (nhỏ nhất) của một hình. Phương pháp giải: + Kí hiệu maxS là giá trị lớn nhất của biểu thức S, minS là giá trị nhỏ nhất của biểu thức S. + Sử dụng tính chất đường vuông góc ngắn hcm đường xiên. + Nếu diện tích của một hình luôn nhỏ hon hoặc bằng một hằng số M và tồn tại một ví trí của hình để diện tích bằng M thì M là diện tích lớn nhất của hình. Tương tự với trường hợp diện tích nhỏ nhất. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích tam giác
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT Diện tích tam giác bằng nửa tích của một cạnh với chiều cao tương ứng. Lưu ý: + Nếu hai tam giác có một cạnh bằng nhau thì tỉ số diện tích hai tam giác đó bằng tỉ số các chiều cao tương ứng. + Nếu hai tam giác có một đường cao bằng nhau thì tỉ số diện tích hai tam giác đó bằng tỉ số các cạnh tương ứng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính toán, chứng minh về diện tích tam giác. Phương pháp giải: Sử dụng công thức tính diện tích tam giác. Dạng 2. Tính độ dài đoạn thẳng bằng cách sử dụng công thức tính diện tích tam giác. Dạng 3. Sử dụng công thức tính diện tích để chứng minh các hệ thức. Phương pháp giải: Phát hiện quan hệ về diện tích trong hình rồi sử dụng các công thức tính diện tích. Dạng 4. Tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích. Phương pháp giải: Dùng công thức tính diện tích dẫn đến điều kiện về vị trí điểm, thường liên quan đến khoảng cách từ một điểm đến một đường thẳng. Dạng 5. Tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phương pháp giải: Để tìm diện tích lớn nhất hoặc nhỏ nhất cùa một hình, ta có thể sử dụng mối quan hệ giữa đường vuông góc và đường xiên. B. PHIẾU BÀI TỰ LUYỆN