Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh năng khiếu Toán 8 năm 2022 - 2023 phòng GDĐT Thanh Sơn - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh năng khiếu cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thanh Sơn, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm khách quan + 60% tự luận, thời gian làm bài 120 phút, không kể thời gian giao đề; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh năng khiếu Toán 8 năm 2022 – 2023 phòng GD&ĐT Thanh Sơn – Phú Thọ : + Ghi chú: Thí sinh lựa chọn đáp án phần trắc nghiệm khách quan chỉ có một lựa chọn đúng. Thí sinh làm bài thi (cả phần trắc nghiệm khách quan và phần tự luận) trên tờ giấy thi (không làm bài trên đề thi). Cho tam giác ABC, các đường trung tuyến BD và CE. Lấy M, N trên BC sao cho BM = MN = NC. Gọi I là giao điểm của AM và BD, K là giao điểm của AN và CE. Biết BC = 10cm thì độ dài IK là? + Để lập đội tuyển năng khiếu bóng rổ nhà trường đưa ra quy định tuyển chọn như sau: mỗi bạn dự tuyển sẽ được ném 10 quả bóng vào rổ, quả bóng vào rổ được cộng 4 điểm; quả bóng ném ra ngoài thì bị trừ 2 điểm. Nếu bạn nào có số điểm từ 22 điểm trở lên thì sẽ được chọn vào đội tuyển. Một học sinh muốn được chọn vào đội tuyển thì số quả bóng phải ném vào rổ ít nhất là? + Cho tam giác ABC nhọn, đường cao BE và CF cắt nhau tại H. Qua B kẻ đường thẳng song song với CF cắt tia AH tại M, AH cắt BC tại D. a) Chứng minh 2 BD AD DM. b) Kẻ AK vuông góc với EF tại K. Chứng minh ∆AEK đồng dạng ∆AHF. c) Chứng minh: AB AC BE CF AE AF.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Hương Khê Hà Tĩnh
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Hương Khê Hà Tĩnh Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Hương Khê - Hà Tĩnh Đề học sinh giỏi Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Hương Khê - Hà Tĩnh Sytu xin giới thiệu tới quý thầy cô và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2021 - 2022 của phòng Giáo dục và Đào tạo huyện Hương Khê, tỉnh Hà Tĩnh. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi trong đề thi: 1. Ông Bảo đã thu lãi 400 triệu đồng khi mua đất đầu tư. Khi mua, giá mỗi m2 đất là 1 triệu đồng, còn khi bán là 5 lần giá mua. Hỏi diện tích đất ông Bảo đã đầu tư? 2. Cô Hân nuôi 80 con gồm gà trống, gà mái và vịt. Số gà mái gấp ba lần số gà trống. Biết 60% số gia cầm là vịt. Hỏi có bao nhiêu con gà mái? 3. Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Chứng minh tam giác AEB đồng dạng với tam giác AFC. Chứng minh DEC đồng dạng với AEF. Gọi I là giao điểm của FD và BE. Chứng minh HI.BE = HE.BI. Đây là một bài thi thách thức và khích lệ học sinh lớp 8 vận dụng kiến thức Toán để giải quyết các bài toán phức tạp. Chúc các em học sinh làm bài tốt và đạt kết quả cao trong kỳ thi!
Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Hà Đông Hà Nội
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Hà Đông Hà Nội Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm học 2021 - 2022 phòng GDĐT Hà Đông - Hà Nội Đề thi học sinh giỏi Toán lớp 8 năm học 2021 - 2022 phòng GDĐT Hà Đông - Hà Nội Chào mừng đến với đề thi giao lưu học sinh giỏi môn Toán lớp 8 năm học 2021 - 2022 của phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội. Dưới đây là một số câu hỏi thú vị và thách thức trong đề thi: 1. Cho các số dương a, b, c thỏa mãn a + b + c = 2022. Hãy tìm giá trị lớn nhất của biểu thức P. 2. Cho tam giác ABC vuông tại A (AC > AB). Vẽ đường cao AH (H thuộc BC) và lấy điểm K trên đường thẳng đối của BC sao cho KH = HA. Tiếp theo, kẻ đường thẳng song song với AH cắt AC tại P. Hãy chứng minh rằng các tam giác AKC và BPC đồng dạng. Sau đó, chứng minh rằng BP vuông góc BC và AQ cắt BC tại I thì HB = AH = BC = IB. 3. Có 5 điểm nằm trong một hình vuông cạnh a = 36,7 đơn vị. Chứng minh rằng tồn tại một điểm nằm trong hình vuông mà khoảng cách từ điểm đó đến 5 điểm khác nhau trong hình vuông đều lớn hơn 10. Hy vọng rằng bạn sẽ thích thú và học hỏi nhiều từ đề thi này. Chúc các em thành công!
Đề kiểm định chất lượng lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Nghi Lộc Nghệ An
Nội dung Đề kiểm định chất lượng lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Nghi Lộc Nghệ An Bản PDF - Nội dung bài viết Đề kiểm định chất lượng lớp 8 môn Toán năm 2021 - 2022 phòng GD ĐT Nghi Lộc Nghệ An Đề kiểm định chất lượng lớp 8 môn Toán năm 2021 - 2022 phòng GD ĐT Nghi Lộc Nghệ An Chào đón quý thầy cô giáo và các em học sinh lớp 8! Hôm nay, Sytu xin giới thiệu đến các bạn đề kiểm định chất lượng môn Toán lớp 8 năm học 2021 - 2022 từ phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An. Dưới đây là một số câu hỏi từ đề kiểm định chất lượng Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Nghi Lộc - Nghệ An mà các em cần giải quyết: + Chứng minh rằng với mọi số tự nhiên n, biểu thức M = 7n^2 - 21n chia hết cho 21. + Tìm số tự nhiên gồm 4 chữ số thỏa mãn hai điều kiện sau đây: a) Khi chia số đó cho 100 ta được số dư là 6; b) Khi chia số đó cho 51 ta được số dư là 17. + Chứng minh rằng với mọi số nguyên a, N = a^2 + 2a + 1 là một số chính phương. Hy vọng đề kiểm định chất lượng này sẽ giúp các em ôn tập, nắm vững kiến thức và chuẩn bị tốt cho kì thi sắp tới. Chúc các em thành công và giải quyết tốt các bài tập Toán này!
Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Kim Thành Hải Dương
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Kim Thành Hải Dương Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 8 môn Toán năm 2021-2022 phòng GD ĐT Kim Thành Hải Dương Đề học sinh giỏi lớp 8 môn Toán năm 2021-2022 phòng GD ĐT Kim Thành Hải Dương Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi môn Toán lớp 8 năm học 2021-2022 do phòng Giáo dục và Đào tạo UBND huyện Kim Thành, tỉnh Hải Dương tổ chức. Trích dẫn đề học sinh giỏi Toán lớp 8 năm 2021-2022 phòng GD&ĐT Kim Thành - Hải Dương: - Bài 1: Cho biểu thức. Rút gọn A và tìm giá trị nguyên của x để A nhận giá trị nguyên. - Bài 2: Cho a, b, c là các số nguyên và thỏa mãn a3 + b3 = 5c3 + 11d3. Chứng minh rằng tổng (a + b + c + d) chia hết cho 6. - Bài 3: Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH (H thuộc BC). Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thẳng (d) song song với AH, (d) cắt đường thẳng AC tại P. Gọi Q là trung điểm của BP, tia AQ cắt đường thẳng BC tại I. Chứng minh. Đề thi mang đến cho các em thử thách, khám phá và rèn luyện kỹ năng giải bài toán. Hy vọng rằng các em sẽ tự tin và thành công trong kỳ thi sắp tới. Chúc các em học tốt!