Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic Toán 11 năm 2019 cụm THPT Thanh Xuân Cầu Giấy Thường Tín Hà Nội

Đề Olympic Toán 11 năm 2019 cụm THPT Thanh Xuân & Cầu Giấy & Thường Tín – Hà Nội nhằm giao lưu đội tuyển học sinh giỏi môn Toán khối 11 của ba trường: trường THPT Thanh Xuân (Hà Nội), trường THPT Cầu Giấy (Hà Nội), trường THPT Thường Tín (Hà Nội), đề thi được biên soạn theo dạng tự luận với 05 bài toán, học sinh làm bài trong 120 phút (không kể thời gian giám thị coi thi phát đề), lời giải chi tiết của đề thi được biên soạn bởi tập thể quý thầy, cô giáo nhóm Diễn Đàn Giáo Viên Toán. Trích dẫn đề Olympic Toán 11 năm 2019 cụm THPT Thanh Xuân & Cầu Giấy & Thường Tín – Hà Nội : + Hoa có 11 bì thư và 7 tem thư khác nhau. Hoa cần gửi thư cho 4 người bạn, mỗi người 1 thư. Hỏi Hoa có bao nhiêu cách chọn ra 4 bì thư và 4 tem thư, sau đó dán mỗi tem thư lên mỗi bì thư để gửi đi? + Một bài thi Olympic Toán 11 hình thức trắc nghiệm khách quan gồm 5 câu hỏi, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án trả lời đúng, 3 phương án sai. Tính xác suất để một học sinh làm bài thi trả lời đúng được ít nhất 3 câu hỏi? [ads] + Cho tứ diện ABCD. 1) Gọi E, F, G lần lượt là trọng tâm các tam giác ABC, ACD, ABD. a) Chứng minh (EFG) // (BCD). b) Tính diện tích tam giác EFG theo diện tích của tam giác BCD. 2) M là điểm thuộc miền trong của tam giác BCD. Kẻ qua M đường thẳng d // AB. a) Xác định giao điểm B’ của đường thẳng d và mặt phẳng (ACD). b) Kẻ qua M các đường thẳng lần lượt song song với AC và AD cắt các mặt phẳng (ABD), (ABC) theo thứ tự tại C’, D’. Chứng minh rằng: MB’/AB + MC’/AC + MD’/AD = 1. c) Tìm giá trị nhỏ nhất của biểu thức T = √AB/MB’ + √AC/MC’ + √AD/MD’.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán 11 năm 2021 - 2022 sở GDĐT Quảng Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 năm học 2021 – 2022 và chọn đội dự tuyển dự thi chọn học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Bình (vòng 1 và vòng 2); kỳ thi được diễn ra vào ngày 25 tháng 04 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn HSG Toán 11 năm 2021 – 2022 sở GD&ĐT Quảng Bình : + Gọi S là tập hợp tất cả các số nguyên dương nhỏ hơn 1000. Một số thuộc S được gọi là số “thú vị” nếu số đó là hợp số và không chia hết cho ba số 2; 3; 5. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn là số “thú vị”. + Người ta tô màu tất cả các số nguyên dương bằng hai màu xanh và đỏ (mỗi số chỉ được tô đúng một màu). Biết rằng có vô hạn các số được tô màu xanh và tổng của hai số được tô khác màu là một số được tô màu đỏ. Gọi số nguyên dương nhỏ nhất lớn hơn 1 được tô màu đỏ là q. a. Hãy chỉ ra (có chứng minh) một cách tô màu thỏa mãn yêu cầu bài toán khi q = 2. b. Chứng minh rằng q là một số nguyên tố. + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, SA vuông góc với mặt phẳng ABCD và SA a AB b AD c. Gọi H là hình chiếu vuông góc của A lên mặt phẳng SBD. a. Trong trường hợp SA AB AD 7 1 gọi P là mặt phẳng đi qua A và vuông góc với SC. Hãy xác định thiết diện của hình chóp S ABCD khi cắt bởi mặt phẳng P và tính diện tích thiết diện đó. b. Chứng minh rằng H là trực tâm của tam giác SBD. c. Chứng minh rằng 3 2 HBD HSD HSB abc a S b S c S ở đây kí hiệu XYZ S là diện tích của tam giác XYZ.
Đề thi học sinh giỏi Toán 11 năm 2021 - 2022 cụm trường THPT - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp cụm môn Toán 11 năm học 2021 – 2022 cụm trường THPT trực thuộc sở Giáo dục và Đào tạo Hà Nội.
Đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2021 - 2022 sở GDĐT Lạng Sơn
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 11 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Lạng Sơn. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2021 – 2022 sở GD&ĐT Lạng Sơn : + Tìm số hạng không chứa x trong khai triển với x khác 0, biết n là số nguyên dương thỏa mãn. + Cho một đa giác đều 2n đỉnh với n >= 3. Gọi S tập các tam giác cân, không đều và có ba đỉnh là ba đỉnh của đa giác. Gọi T là tập tất cả các tam giác có ba đỉnh là ba đỉnh của đa giác. Chứng minh rằng số phần tử của tập T\S không vượt quá. + Một cái phễu có dạng hình nón có chiều cao bằng 3cm. Người ta đổ một lượng nước vào phễu sao cho chiều cao của lượng nước trong phễu bằng chiều cao của phễu. Bịt kín miệng của phễu, tính chiều cao mực nước trong nón sau khi lật lại (biết công thức tính thể tích của khối nón có bán kính đáy r = OA và chiều cao h = SO là V = 1/3pir2h).
Đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2021 - 2022 sở GDĐT Bình Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 11 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào thứ Sáu ngày 18 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2021 – 2022 sở GD&ĐT Bình Định : + Rút ngẫu nhiên 8 tấm thẻ trong 20 tấm thẻ được đánh số từ 1 đến 20. Tìm xác suất để 8 tấm thẻ rút ra có 5 tấm thẻ mang số lẻ, 3 tấm thẻ mang số chẵn, trong đó có đúng 3 tầm thẻ mang số chia hết cho 3. + Trong mặt phẳng Oxy, cho tam giác ABC cân tại A(-1;3). Gọi D là một điểm trên cạnh AB sao cho AB = 3AD và H là hình chiếu vuông góc của B trên CD. Điểm M là trung điểm đoạn HC. Xác định tọa độ điểm C biết đỉnh B nằm trên đường thẳng x + y + 7 = 0. + Cho hình thoi ABCD có BAD = 60° và AB = 2a. Gọi H là trung điểm AB, trên đường thẳng d vuông góc với mặt phẳng (ABCD) tại H lấy điểm S thay đổi khác H. Tính SH khi góc giữa SC và mặt phẳng (SAD) có số đo lớn nhất.