Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 Toán 9 năm 2022 - 2023 sở GDĐT Thái Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng cuối học kì 1 môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi học kì 1 Toán 9 năm 2022 – 2023 sở GD&ĐT Thái Bình : + Một chiếc thang có độ dài AB là 4,7m. Cần đặt chân thang cách chân tường một khoảng BC bằng bao nhiêu để nó tạo với mặt đất một góc “an toàn” là 65° (tức là bảo đảm thang không bị đổ khi sử dụng)? (Kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho đường thẳng (d) có phương trình: y = (m + 4)x – m + 6 (với m là tham số) a. Tìm m để đường thẳng (d) đi qua điểm A(−1; 2). b. Chứng minh rằng khi m thay đổi thì đường thẳng (d) luôn đi qua một điểm cố định, tìm tọa độ điểm cố định đó. + Cho đường tròn tâm O bán kính R và điểm A nằm ngoài đường tròn sao cho OA = 2R. Kẻ các tiếp tuyến AM và AN với đường tròn tâm O (với M, N là các tiếp điểm). 1. Chứng minh rằng: OA vuông góc với MN. Tính độ dài đoạn AM theo R. 2. Kẻ đường kính MB của đường tròn tâm O. Chứng minh rằng: NB song song với AO. 3. Gọi H là giao điểm của OA và MN. Chứng minh rằng: OA = 4OH. 4. Lấy điểm C thuộc cung nhỏ MN, qua C kẻ tiếp tuyến với đường tròn, tiếp tuyến này cắt AM và AN lần lượt tại P và Q. Chứng minh rằng: PQ < R3.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 - 2018 sở GD và ĐT Bạc Liêu
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 – 2018 sở GD và ĐT Bạc Liêu gồm 1 trang với 5 bài toán tự luận, đề thi nhằm đánh giá chất lượng học tập môn Toán của học sinh lớp 9. Đề thi có lời giải chi tiết và thang điểm.
Đề khảo sát chất lượng học kỳ 1 Toán 9 năm học 2017 - 2018 sở GD và ĐT Nam Định
Đề khảo sát chất lượng học kỳ 1 Toán 9 năm học 2017 – 2018 sở GD và ĐT Nam Định thuộc chuyên mục đề thi HK1 Toán 9 gồm 8 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho hàm số y = (m – 1)x + m. a) Xác định giá trị của m để đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 2. b) Xác định giá trị của m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng -3. c) Vẽ đồ thị của hai hàm số ứng với giá trị của m tìm được ở các câu a) và b) trên cùng hệ trục tọa độ Oxy và tìm tọa độ giao điểm của hai đường thẳng vừa vẽ được. [ads] + Cho đường tròn (O, R) và đường thẳng d cố định không cắt đường tròn. Từ một điểm A bất kì trên đường thẳng d kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Từ B kẻ đường thẳng vuông góc với AO tại H, trên tia đối của tia HB lấy điểm C sao cho HC = HB. a) Chứng minh C thuộc đường tròn (O, R) và AC là tiếp tuyến của đường tròn (O, R). b) Từ O kẻ đường thẳng vuông góc với đường thẳng d tại I, OI cắt BC tại K. Chứng minh OH.OA = OI.OK = R^2. c) Chứng minh khi A thay đổi trên đường thẳng d thì đường thẳng BC luôn đi qua một điểm cố định.