Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra giữa kì 1 Toán 8 năm 2019 - 2020 trường Trường Chinh - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối lớp 8 đề kiểm tra giữa kì 1 Toán 8 năm học 2019 – 2020 trường THCS Trường Chinh, quận Tân Bình, thành phố Hồ Chí Minh, đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 60 phút, kỳ thi nhằm tổng kiểm tra kiến thức Toán 8 mà học sinh đã học trong giai đoạn vừa qua. Trích dẫn đề kiểm tra giữa kì 1 Toán 8 năm 2019 – 2020 trường Trường Chinh – TP HCM : + Nhân dịp nhà sách khuyến mãi 20% cho tất cả các mặt hàng, bạn Hà vào mua một cái cặp giá 300 000 đồng, một cuốn sách giá 120 000 nghìn đồng (số tiền cặp và sách chưa được giảm giá). Em hãy tính số tiền của cặp và sách mà bạn Hà phải trả sau khi được giảm giá. [ads] + Nhà ông Hùng có một cái sân hình chữ nhật rộng 8 m, dài 10 m. Ông Hùng dự định lát gạch trên toàn bộ mặt sân bằng những viên gạch hình vuông cạnh 40 cm. Biết giá mỗi viên gạch là 600 000 đồng (diện tích vữa để gắn kết các viên gạch không đáng kể). a) Tính diện tích sân nhà ông Hùng. b) Hỏi ông Hùng cần chuẩn bị bao nhiêu tiền để mua gạch. + Cho tam giác ABC vuông tại C (AC < BC), I là trung điểm của AB. Kẻ IE vuông góc với BC tại E, kẻ IF vuông góc với AC tại F. a) Chứng minh tứ giác CEIF là hình chữ nhật. b) Gọi H là điểm đối xứng của I qua F. Chứng minh tứ giác CHFE là hình bình hành. c) CI cắt BF tại G, O là trung điểm FI. Chứng minh ba điểm A, O, G thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa học kì 1 Toán 8 năm 2020 - 2021 trường THCS Lê Quý Đôn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giữa học kì 1 Toán 8 năm 2020 – 2021 trường THCS Lê Quý Đôn – Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa học kì 1 Toán 8 năm 2020 – 2021 trường THCS Lê Quý Đôn – Hà Nội : + Cho hình bình hành ABCD có AB > BC. Đường phân giác của góc D cắt AB tại M, đường phân giác của góc B cắt CD tại N. a/ Chứng minh AM = CN b/ Chứng minh tứ giác DMBN là hình bình hành. + Tìm đa thức thương và đa thức dư trong phép chia đa thức A x cho B x. + Để 2 4 12 y y trở thành một hằng đẳng thức. Giá trị trong ô vuông là?
Đề thi giữa học kì 1 Toán 8 năm 2020 - 2021 trường THCS Mỹ Đình 1 - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giữa học kì 1 Toán 8 năm 2020 – 2021 trường THCS Mỹ Đình 1 – Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa học kì 1 Toán 8 năm 2020 – 2021 trường THCS Mỹ Đình 1 – Hà Nội : + Một tứ giác có nhiều nhất là: A. 4 góc vuông. B. 3 góc vuông. C. 2 góc vuông. D. 1 góc vuông. + Một hình thang cân là hình thang có: A. Hai đáy bằng nhau. B. Hai cạnh bên bằng nhau. C. Hai đường chéo bằng nhau. D. Hai cạnh bên song song. + Một hình thang có đáy lớn dài 6 cm,đáy nhỏ dài 4 cm. Độ dài đường trung bình của hình thang đó là: A. 10cm. B. 5 cm. C. 10 cm. D. 5 cm.
Đề thi giữa kỳ 1 Toán 8 năm 2020 - 2021 trường THCS Tam Hồng - Vĩnh Phúc
Đề thi giữa kỳ 1 Toán 8 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án trắc nghiệm + lời giải chi tiết tự luận. Trích dẫn đề thi giữa kỳ 1 Toán 8 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc : + Cho ∆𝐴𝐵𝐶 vuông tại C (AC < BC), I là trung điểm của AB. Kẻ IE BC tại E, IF AC tại F. a) Chứng minh tứ giác CEIF là hình chữ nhật. b) Gọi H là điểm đối xứng của I qua F. Chứng minh tứ giác CHFE là hình bình hành. c) CI cắt BF tại G, O là trung điểm của FI. Chứng minh 3 điểm A, O, G thẳng hàng. + Một hình thang có độ dài hai đáy là 6cm và 10cm. Độ dài đường trung bình của hình thang đó là? + Tìm giá trị nhỏ nhất của biểu thức P = (x – 1)(x + 2)(x + 3)(x + 6).
Đề thi giữa học kỳ 1 Toán 8 năm 2020 - 2021 sở GDĐT Bắc Ninh
Đề thi giữa học kỳ 1 Toán 8 năm 2020 – 2021 sở GD&ĐT Bắc Ninh được biên soạn theo hình thức đề thi 100 % tự luận với 05 bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề). Trích dẫn đề thi giữa học kỳ 1 Toán 8 năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Cho hình bình hành ABCD, trên tia đối của tia AD lấy điểm E sao cho AE AD. Gọi F là giao điểm của EC và AB. a) Chứng minh tứ giác AEBC là hình bình hành. b) Chứng minh FE FC. c) Trên tia đối của tia CD lấy điểm M sao cho MC CD. Chứng minh ba điểm E B M thẳng hàng. + Phân tích các đa thức sau thành nhân tử. + Tìm giá trị nhỏ nhất của biểu thức sau.