Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa cuối học kì 1 Toán 10 năm 2023 - 2024 sở GDĐT Quảng Ngãi

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề minh họa kiểm tra cuối học kì 1 môn Toán 10 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi; đề thi được biên soạn theo cấu trúc 70% trắc nghiệm + 30% tự luận (theo điểm số), có ma trận, bảng đặc tả, đáp án và hướng dẫn chấm điểm. 1 TẬP HỢP. MỆNH ĐỀ Mệnh đề. – Nhận biết: + Phát biểu được các mệnh đề toán học, bao gồm: mệnh đề phủ định; mệnh đề đảo; mệnh đề tương đương; mệnh đề có chứa kí hiệu ∀, ∃; điều kiện cần, điều kiện đủ, điều kiện cần và đủ. – Thông hiểu: + Thiết lập được các mệnh đề toán học, bao gồm: mệnh đề phủ định; mệnh đề đảo; mệnh đề tương đương; mệnh đề có chứa kí hiệu ∀, ∃; điều kiện cần, điều kiện đủ, điều kiện cần và đủ. + Xác định được tính đúng/sai của một mệnh đề toán học trong những trường hợp đơn giản. Tập hợp và các phép toán trên tập hợp. – Nhận biết: + Nhận biết được các khái niệm cơ bản về tập hợp (tập con, hai tập hợp bằng nhau, tập rỗng) và biết sử dụng các kí hiệu. – Thông hiểu: + Thực hiện được phép toán trên các tập hợp (hợp, giao, hiệu của hai tập hợp, phần bù của một tập con) và biết dùng biểu đồ Ven để biểu diễn chúng trong những trường hợp cụ thể. – Vận dụng: + Giải quyết được một số vấn đề thực tiễn gắn với phép toán trên tập hợp (ví dụ: những bài toán liên quan đến đếm số phần tử của hợp các tập hợp). 2 BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN Bất phương trình bậc nhất hai ẩn. – Nhận biết: + Nhận biết được bất phương trình bậc nhất hai ẩn. + Nhận biết được nghiệm và miền nghiệm của bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. – Thông hiểu: + Mô tả được miền nghiệm của bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. Hệ bất phương trình bậc nhất hai ẩn. – Nhận biết: + Nhận biết được hệ bất phương trình bậc nhất hai ẩn. + Nhận biết được nghiệm và miền nghiệm của hệ bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. – Thông hiểu: + Mô tả được miền nghiệm của hệ bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. – Vận dụng: + Vận dụng được kiến thức về hệ bất phương trình bậc nhất hai ẩn vào giải quyết bài toán thực tiễn, bài toán tìm cực trị của biểu thức F = ax + by trên một miền đa giác. – Vận dụng cao: + Vận dụng được kiến thức về bất phương trình, hệ bất phương trình bậc nhất hai ẩn vào giải quyết một số bài toán thực tiễn (phức hợp, không quen thuộc). 3 HỆ THỨC LƯỢNG TRONG TAM GIÁC Giá trị lượng giác của một góc từ 0° đến 180°. – Nhận biết: + Nhận biết được giá trị lượng giác của một góc từ 0° đến 180°. + Nhận biết được hệ thức liên hệ giữa giá trị lượng giác của các góc phụ nhau, bù nhau, các hệ thức lượng giác cơ bản. – Thông hiểu: + Tính được giá trị lượng giác (đúng hoặc gần đúng) của một góc từ 0° đến 180° bằng máy tính cầm tay. Hệ thức lượng trong tam giác. – Nhận biết: + Nhận biết các hệ thức lượng cơ bản trong tam giác: định lí côsin, định lí sin, công thức tính diện tích tam giác. – Thông hiểu: + Sử dụng được các hệ thức lượng cơ bản trong tam giác: định lí côsin, định lí sin và công thức tính diện tích tam giác để tính các cạnh, các góc chưa biết và diện tích tam giác, độ dài đường cao, đường trung tuyến, bán kính đường tròn nội, ngoại tiếp tam giác. – Vận dụng: + Mô tả được cách giải tam giác và vận dụng được vào việc giải một số bài toán có nội dung thực tiễn (ví dụ: xác định khoảng cách giữa hai địa điểm khi gặp vật cản, xác định chiều cao của vật khi không thể đo trực tiếp) hoặc các bài toán khác về hệ thức lượng trong tam giác. 4 VECTƠ Các khái niệm mở đầu. – Nhận biết: + Nhận biết được khái niệm vectơ, hai vectơ cùng phương, hai vectơ cùng hướng, hai vectơ bằng nhau, vectơ-không. – Thông hiểu: + Mô tả được một số đại lượng trong thực tiễn bằng vectơ. + Tính được độ dài vectơ. Tổng và hiệu của hai vectơ. – Nhận biết: + Nhận biết được quy tắc ba điểm, quy tắc hình bình hành, quy tắc về hiệu vectơ, quy tắc trung điểm và trọng tâm tam giác. – Thông hiểu: + Thực hiện được các phép toán tổng và hiệu hai vectơ. + Mô tả được một số đại lượng trong thực tiễn bằng vectơ. – Vận dụng: + Vận dụng vectơ trong các bài toán tổng hợp lực, tổng hợp vận tốc. Tích của một vectơ với một số. – Nhận biết: + Nhận biết định nghĩa tích của vectơ với một số, các tính chất. + Biết được điều kiện để hai vectơ cùng phương, tính chất trung điểm, tính chất trọng tâm. – Thông hiểu: + Thực hiện được phép nhân vectơ với một số. + Mô tả các mối quan hệ cùng phương, cùng hướng bằng vectơ. Vectơ trong mặt phẳng tọa độ. – Nhận biết: + Nhận biết được vectơ theo hai vectơ đơn vị, tìm được tọa độ vectơ khi biết tọa độ hai điểm, tìm độ dài vectơ khi biết tọa độ. – Thông hiểu: + Tính được tọa độ điểm, vectơ thỏa mãn đẳng thức, tọa độ của vectơ tổng, tọa độ trung điểm, trọng tâm, tọa độ đỉnh hình bình hành, vectơ cùng phương, độ dài vectơ. – Vận dụng: + Vận dụng kiến thức tọa độ của điểm, của vectơ để giải các bài toán tìm tọa độ của điểm, của vectơ hoặc các bài toán khác có vận dụng thực tiễn. Tích vô hướng của hai vectơ. – Nhận biết: + Nhận biết được tích vô hướng hai vectơ, biểu thức tọa độ tích vô hướng, góc giữa hai vectơ. – Thông hiểu: + Tính được tích vô hướng hai vectơ, góc giữa hai vectơ, biểu thức tọa độ tích vô hướng, tìm tọa độ điểm, vectơ liên quan đến độ dài vectơ, tích vô hướng. – Vận dụng: + Sử dụng được vectơ và các phép toán trên vectơ để giải thích một số hiện tượng có liên quan đến Vật lí và Hoá học (ví dụ: những vấn đề liên quan đến lực, đến chuyển động). + Vận dụng được kiến thức về vectơ để giải một số bài toán hình học và một số bài toán liên quan đến thực tiễn (ví dụ: xác định lực tác dụng lên vật). 5 CÁC SỐ ĐẶC TRƯNG CỦA MẪU SỐ LIỆU KHÔNG GHÉP NHÓM Số gần đúng, sai số. – Nhận biết: + Hiểu được khái niệm số gần đúng, sai số tuyệt đối. – Thông hiểu: + Xác định được số gần đúng của một số với độ chính xác cho trước. + Xác định được sai số tương đối của số gần đúng. – Vận dụng: + Xác định được số quy tròn của số gần đúng với độ chính xác cho trước. + Biết sử dụng máy tính cầm tay để tính toán với các số gần đúng. Các số đặc trưng đo xu thế trung tâm. – Nhận biết: + Nắm các khái niệm về số trung bình, số trung vị, tứ phân vị, mốt và ý nghĩa. – Thông hiểu: + Biết tìm số trung bình và mốt dựa vào bảng số liệu. – Vận dụng: + Tính được số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm: số trung bình cộng (hay số trung bình), trung vị (median), tứ phân vị (quartiles), mốt (mode). – Vận dụng cao: + Giải thích được ý nghĩa và vai trò của các số đặc trưng nói trên của mẫu số liệu trong thực tiễn. + Chỉ ra được những kết luận nhờ ý nghĩa của số đặc trưng nói trên của mẫu số liệu trong trường hợp đơn giản. Các số đặc trưng đo mức độ phân tán. – Nhận biết: + Nhận biết được mối liên hệ giữa thống kê với những kiến thức của các môn học trong Chương trình lớp 10 và trong thực tiễn. – Thông hiểu: + Giải thích được ý nghĩa và vai trò của các số đặc trưng nói trên của mẫu số liệu trong thực tiễn. – Vận dụng: + Tính được số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm: khoảng biến thiên, khoảng tứ phân vị, phương sai, độ lệch chuẩn. – Vận dụng cao: + Chỉ ra được những kết luận nhờ ý nghĩa của số đặc trưng nói trên của mẫu số liệu trong trường hợp đơn giản.

Nguồn: toanmath.com

Đọc Sách

Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Thường Tín Hà Nội
Nội dung Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Thường Tín Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh khối lớp 10 đề thi cuối kì 1 Toán lớp 10 năm học 2020 – 2021 trường THPT Thường Tín – Hà Nội; đề thi được biên soạn theo hình thức trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 15 câu, chiếm 3,0 điểm, phần tự luận gồm 05 câu, chiếm 7,0 điểm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi cuối kì 1 Toán lớp 10 năm 2020 – 2021 trường THPT Thường Tín – Hà Nội : + Một sợi dây có chiều dài là 6 mét được chia thành hai phần. Phần thứ nhất được uốn thành hình tam giác đều, phần thứ hai uốn thành hình vuông. Hỏi độ dài của cạnh hình tam giác đều bằng bao nhiêu mét để tổng diện tích hai hình thu được là nhỏ nhất? + Cho tam giác ABC có điểm M thuộc cạnh AC sao cho MA = -2MC, điểm N thuộc cạnh BM sao cho NB = -3NM, điểm P thuộc cạnh BC sao cho PB = kPC. a) Hãy phân tích véc tơ AN theo hai véc tơ AB và AC. b) Tìm giá trị của k để ba điểm A, N, P thẳng hàng. + Cho tam giác ABC. Tập hợp điểm M thỏa mãn: |MA + 2MB + 3MC| = |MB – MC| là: A. Đường tròn bán kính BC. B. Đường trung trực của đoạn BC. C. Trung điểm của BC. D. Đường tròn bán kính BC/6.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm học 2020 2021 sở GD ĐT Vĩnh Phúc
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm học 2020 2021 sở GD ĐT Vĩnh Phúc Bản PDF Ngày … tháng 12 năm 2020, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề thi học kì 1 Toán lớp 10 năm học 2020 – 2021 sở GD&ĐT Vĩnh Phúc gồm 02 trang với 16 câu trắc nghiệm và 04 câu tự luận, phần trắc nghiệm chiếm 4,0 điểm, phần tự luận chiếm 6,0 điểm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 135, 213, 358, 486. Trích dẫn đề thi học kì 1 Toán lớp 10 năm học 2020 – 2021 sở GD&ĐT Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2;-3) và B(-4;1). a) Tìm tọa độ trung điểm của đoạn thẳng AB. b) Tìm tọa độ điểm C sao cho A là trọng tâm của tam giác OBC (O là gốc tọa độ). + Cho hàm số y = x^2 + ax + b. Tìm các hệ số a, b biết đồ thị hàm số đi qua hai điểm M(-1;0), N(-2;-1). + Cho phương trình x^2 – 2x – 4√(x^2 – 2x + 2) + 2m – 1 = 0 (x là ẩn, m là tham số). Tìm tất cả các giá trị của m để phương trình trên có đúng hai nghiệm phân biệt.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Lê Quý Đôn Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Lê Quý Đôn Hà Nội Bản PDF Đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Lê Quý Đôn – Hà Nội gồm 10 câu trắc nghiệm và 09 câu tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Lê Quý Đôn – Hà Nội : + Cho phương trình x2 – (2m – 1)x + m2 – 3m + 1 = 0 (m là tham số). Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 sao cho biểu thức P = x1(x2 + 2) + x2(x1 + 2) đạt giá trị nhỏ nhất. + Cho tam giác ABC. Điểm M trên cạnh BC thỏa mãn BM = 1/3.BC. N là trung điểm của AC. Điểm P thỏa mãn AP = 2AB. a. Phân tích AM qua hai véctơ không cùng phương AB, AC. b. Chứng minh rằng M, N, P thẳng hàng. + Trong mặt phẳng tọa độ Oxy cho hai vectơ a(-3;1), b(2;5). Tính tọa độ của véctơ u = 2a – b.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Quang Trung Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Quang Trung Hà Nội Bản PDF Đề thi học kỳ 1 Toán lớp 10 năm 2020 – 2021 trường THPT Quang Trung – Hà Nội được biên soạn theo hình thức đề trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 35 câu, chiếm 07 điểm, phần tự luận gồm 03 câu, chiếm 03 điểm, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán lớp 10 năm 2020 – 2021 trường THPT Quang Trung – Hà Nội : + Cho Parabol (P): y = x2 – 4x + m – 1 và đường thẳng (d): y = -2mx + 3. a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (P) khi m = 4. b) Tìm tất cả các giá trị thực của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ âm. + Giải phương trình √(21 – x2 – 4x) = x + 3. + Trong mặt phẳng Oxy, cho tam giác ABC có A(2;1), B(1;1), C(-3;4). a) Tìm tọa độ trọng tâm G và trực tâm H của tam giác ABC. b) Tìm tọa độ điểm M thuộc trục hoành sao cho (MA + MB) đạt giá trị nhỏ nhất.