Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

650 câu trắc nghiệm có lời giải chi tiết trong các đề thi THPTQG môn Toán

Nhằm giúp quý thầy, cô giáo cùng các em học sinh khối 12 có thêm tài liệu chất lượng để ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2019 – 2020, giới thiệu tài liệu 650 câu trắc nghiệm có lời giải chi tiết trong các đề thi THPTQG môn Toán. Tài liệu gồm 360 trang được biên soạn bởi thầy Tiêu Phước Thừa tuyển chọn 650 câu hỏi và bài toán trắc nghiệm có đáp án và lời giải chi tiết, từ các đề thi chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo trong các năm 2017, 2018, 2019. Khái quát nội dung tài liệu tuyển tập các câu hỏi và bài tập trong đề thi THPT Quốc gia môn Toán: 1. Bài toán chỉ sử dụng P hoặc C hoặc A. 2. Bài toán kết hợp P, C và A. 3. Nhị thức newton. 4. Tính xác suất bằng định nghĩa. 5. Tính xác suất bằng công thức cộng. 6. Tính xác suất bằng công thức nhân. 7. Tính xác suất kết hợp công thức nhân và cộng. 8. Nhận diện cấp số cộng. 9. Tìm hạng tử cấp số cộng. 10. Giới hạn dãy số. 11. Giới hạn hàm số. 12. Bài toán tiếp tuyến. 13. Bài toán quãng đường vận tốc gia tốc. 14. Xét tính đơn điệu dựa vào công thức. 15. Xét tính đơn điệu dựa vào công thức. 16. Tìm điều kiện để hàm số đơn điệu. 17. Ứng dụng tính đơn điệu vào giải phương trình, hệ phương trình, bất phương trình. 18. Cực trị hàm số cho bởi công thức. 19. Tìm cực trị dựa vào bbt, đồ thị. 20. Tìm m để hàm số đạt cực trị tại một điểm x0 cho trước. 21. Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện. 22. Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn điều kiện. 23. Tìm m để hàm số, đồ thị hàm số các hàm số khác có cực trị thỏa mãn điều kiện. 24. Giá trị nhỏ nhất, Giá trị lớn nhất của hàm số trên đoạn. 25. Giá trị nhỏ nhất, Giá trị lớn nhất của hàm số trên khoảng. 26. Ứng dụng Giá trị lớn nhất, Giá trị nhỏ nhất, toán thực tế. 27. Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết bảng biến thiên, đồ thị. 28. Bài toán xác định các đường tiệm cận của hàm số có chứa tham số. 29. Bài toán liên quan đến đồ thị hàm số và các đường tiệm cận. 30. Câu hỏi lý thuyết về tiệm cận. 33. Biện luận nghiệm phương trình. 34. Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). 35. Điểm đặc biệt của đồ thị hàm số. 36. Lũy thừa. 37. Tập xác định hàm số lũy thừa. 38. Tính giá trị biểu thức chứa lô-ga-rít. 39. Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. 40. So sánh các biểu thức lô-ga-rít. 41. Tập xác định của hàm số mũ hàm số logarit. 42. Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. 43. Khảo sát sự biến thiên và đồ thị của hàm số mũ, lô-ga-rít. 44. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít. 45. Bài toán thực tế về hàm số mũ, logarit. 46. Lý thuyết tổng hợp hàm số lũy thừa, mũ, lô-ga-rít. 47. Phương trình cơ bản. 48. Đưa về cùng cơ số. 49. Đặt ẩn phụ. 50. Dùng phương pháp hàm số đánh giá. [ads] 51. Toán thực tế. 52. Bất phương trình cơ bản. 53. Đưa về cùng cơ số. 54. Đặt ẩn phụ. 55. Toán thực tế. 56. Sử dụng định nghĩa – tính chất cơ bản. 57. Dùng phương pháp nguyên hàm từng phần. 58. Tích phân cơ bản. 59. Phương pháp đổi biến. 60. Phương pháp từng phần. 61. Hàm đặc biệt hàm ẩn. 62. Diện tích hình phẳng được giới hạn bởi các đồ thị. 63. Bài toán thực tế sử dụng diện tích hình phẳng. 64. Thể tích giới hạn bởi các đồ thị (tròn xoay). 65. Thể tích tính theo mặt cắt S(x). 66. Toán thực tế. 67. Xác định các yếu tố cơ bản của số phức. 68. Biểu diễn hình học cơ bản của số phức. 69. Thực hiện phép tính cộng, trừ, nhân số phức. 70. Xác định các yếu tố cơ bản của số phức qua các phép toán. 71. Bài toán quy về giải phương trình, hệ phương trình nghiệm thực. 72. Bài toán tập hợp điểm số phức. 73. Phép chia số phức. 74. Phương trình bậc hai với hệ số thực. 75. Phương trình quy về bậc hai. 76. Phương pháp hình học. 77. Phương pháp đại số. 78. Xác định góc giữa hai đường thẳng (dùng định nghĩa). 79. Xác định góc giữa mặt phẳng và đường thẳng. 80. Xác định góc giữa hai mặt phẳng. 81. Góc giữa 2 véctơ, 2 đường thẳng trong hình lăng trụ, hình lập phương. 82. Khoảng cách điểm đến đường mặt. 83. Khoảng cách giữa hai đường chéo nhau. 84. Xác định số đỉnh, cạnh, mặt bên của một khối đa diện. 85. Phân chia, lắp ghép các khối đa diện. 86. Phép biến hình trong không gian. 87. Diện tích xung quanh diện tích toàn phần. 88. Tính thể tích các khối đa diện. 89. Tỉ số thể tích. 90. Các bài toán khác (góc, khoảng cách …) liên quan đến thể tích khối đa diện. 91. Toán thực tế. 92. Cực trị. 93. Thể tích khối nón, khối trụ. 94. Diện tích xung quanh, toàn phần, độ dài đường sinh, chiều cao, bán kính. 95. Khối tròn xoay nội tiếp, ngoại tiếp khối đa diện. 96. Bài toán thực tế về khối nón, khối trụ. 97. Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. 98. Khối cầu ngoại tiếp khối đa diện. 99. Toán tổng hợp về mặt cầu. 100. Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. 101. Tích vô hướng và ứng dụng. 102. Phương trình mặt cầu (xác định tâm, bán kính, viết phương trình mặt cầu đơn giản, vị trí tương đối, hai mặt cầu, điểm đến mặt cầu, đơn giản). 103. Các bài toán cực trị. 104. Tích có hướng và ứng dụng. 105. Xác định vectơ pháp tuyến. 106. Viết phương trình mặt phẳng. 107. Tìm tọa độ điểm liên quan đến mặt phẳng. 108. Các bài toán khoảng cách. 109. Các bài toán xét vị trí tương đối. 110. Các bài toán cực trị. 111. Xác định vec-tơ chỉ phương. 112. Viết phương trình đường thẳng. 113. Tìm tọa độ điểm liên quan đường thẳng. 114. Khoảng cách. 115. Vị trí tương đối. 116. Tổng hợp mặt phẳng đường thẳng mặt cầu. 117. Các bài toán cực trị. 118. Ứng dụng phương pháp tọa độ.

Nguồn: toanmath.com

Đọc Sách

Các chuyên đề Hình học ôn thi tốt nghiệp THPT Lư Sĩ Pháp
Nội dung Các chuyên đề Hình học ôn thi tốt nghiệp THPT Lư Sĩ Pháp Bản PDF - Nội dung bài viết Các chuyên đề Hình học ôn thi tốt nghiệp THPT Lư Sĩ Pháp Các chuyên đề Hình học ôn thi tốt nghiệp THPT Lư Sĩ Pháp Tài liệu này được biên soạn bởi thầy Lư Sĩ Pháp, gồm tổng cộng 78 trang. Được tạo ra để giúp học sinh ôn tập và chuẩn bị cho kỳ thi tốt nghiệp THPT, tài liệu tập trung vào các chuyên đề hình học. Chính xác là: 1. Chuyên đề 1: Thể tích khối đa diện 2. Chuyên đề 2: Mặt nón - Mặt trụ - Mặt cầu 3. Chuyên đề 3: Phương pháp tọa độ trong không gian 4. Chuyên đề 4: Góc trong không gian 5. Chuyên đề 5: Khoảng cách trong không gian Đặc biệt, tài liệu này bao gồm hệ thống bài tập trắc nghiệm được chọn lọc kỹ lưỡng, với đáp án chi tiết giúp học sinh hiểu rõ hơn về các khái niệm và quy luật. Đồng thời, nó cũng bám sát đề thi minh họa và đề thi tham khảo tốt nghiệp THPT của Bộ Giáo dục và Đào tạo, giúp học sinh tự tin hơn khi đối diện với kỳ thi sắp tới. Nội dung của tài liệu được thiết kế sao cho phù hợp với chương trình của Bộ Giáo dục và Đào tạo, giúp học sinh rèn luyện và củng cố kiến thức một cách hiệu quả. Mỗi chuyên đề đều có phần ôn tập, bài tập trắc nghiệm và đáp án, giúp học sinh tự học một cách có tổ chức và có kế hoạch.
Tài liệu hội thảo ôn thi tốt nghiệp THPT 2020 môn Toán sở GD ĐT Tây Ninh
Nội dung Tài liệu hội thảo ôn thi tốt nghiệp THPT 2020 môn Toán sở GD ĐT Tây Ninh Bản PDF - Nội dung bài viết Tài liệu ôn thi tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Tây Ninh Tài liệu ôn thi tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Tây Ninh Sytu hân hạnh giới thiệu đến quý thầy, cô giáo và các em học sinh khối 12 tài liệu hội thảo ôn thi tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Tây Ninh. Bộ tài liệu bao gồm 123 trang chứa đựng tổng hợp lý thuyết, hướng dẫn giải các dạng toán và hệ thống bài tập trắc nghiệm có đáp án và lời giải chi tiết, giúp học sinh chuẩn bị tốt cho kỳ thi tốt nghiệp THPT môn Toán năm học 2019 – 2020. Nội dung chính của tài liệu hội thảo ôn thi tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Tây Ninh được phân chia như sau: Phân tích cấu trúc đề minh họa kỳ thi tốt nghiệp THPT 2020 môn Toán, gồm các phần: Tổ hợp, xác suất: 2 câu Dãy số, cấp số: 1 câu Quan hệ vuông góc: 2 câu Ứng dụng đạo hàm, khảo sát hàm số: 12 câu Lũy thừa, mũ, lôgarit: 9 câu Nguyên hàm, tích phân: 5 câu Số phức: 5 câu Thể tích khối đa diện: 3 câu Khối tròn xoay: 5 câu Hình tọa độ không gian: 6 câu Số câu theo mức độ nhận thức: Nhận biết: 21 câu Thông hiểu: 17 câu Vận dụng thấp: 7 câu Vận dụng cao: 5 câu Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Mũ và lôgarit Nguyên hàm, tích phân và ứng dụng Số phức Khối đa diện và khối tròn xoay Phương pháp tọa độ trong không gian Ôn tập kiến thức Toán lớp 11 Tài liệu được cung cấp dưới dạng file Word để giúp quý thầy, cô giáo dễ dàng sử dụng và phân phối cho học sinh.
50 dạng toán ôn thi tốt nghiệp THPT 2020 môn Toán
Nội dung 50 dạng toán ôn thi tốt nghiệp THPT 2020 môn Toán Bản PDF - Nội dung bài viết Thông tin về sản phẩm 50 dạng toán ôn thi tốt nghiệp THPT 2020 môn Toán Thông tin về sản phẩm 50 dạng toán ôn thi tốt nghiệp THPT 2020 môn Toán Sản phẩm này là tài liệu học tập chất lượng cao, được biên soạn bởi đội ngũ giáo viên tận tâm từ Nhóm Word Và Biên Soạn Tài Liệu Toán. Với tổng cộng 1368 trang, tài liệu này hướng đến mục tiêu giúp học sinh khối 12 ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi tốt nghiệp THPT môn Toán năm 2020. Nội dung của tài liệu tập trung vào 50 dạng toán đa dạng và phong phú, dựa trên đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 do Bộ Giáo dục và Đào tạo công bố. Các dạng toán bao gồm cả các chủ đề quan trọng như hoán vị, tổ hợp, cấp số cộng và cấp số nhân, giải bất phương trình mũ và logarit, tính thể tích các hình học đặc biệt như khối lăng trụ, khối nón, trụ, cầu, hàm số, nguyên hàm, giá trị lớn nhất - giá trị nhỏ nhất của hàm số, xác suất, và nhiều chủ đề khác. Tài liệu không chỉ cung cấp bài tập mẫu mà còn lời giải chi tiết và hướng dẫn cách giải, giúp học sinh nắm vững kiến thức và kỹ năng cần thiết cho kỳ thi tốt nghiệp. Với sự tổng hợp thông tin cẩn thận và cách trình bày logic, tài liệu giúp học sinh nắm bắt nhanh chóng và hiệu quả các kiến thức quan trọng. Tóm lại, tài liệu 50 dạng toán ôn thi tốt nghiệp THPT 2020 môn Toán là nguồn tài liệu hữu ích, đáng tin cậy để học sinh khối 12 tự tin chuẩn bị cho kỳ thi quan trọng của mình. Hãy sử dụng tài liệu này để rèn luyện và nắm vững kiến thức, giúp bạn đạt được kết quả cao trong kỳ thi tốt nghiệp THPT.
Phương pháp chọn đại diện giải toán trắc nghiệm Trần Tuấn Anh
Nội dung Phương pháp chọn đại diện giải toán trắc nghiệm Trần Tuấn Anh Bản PDF - Nội dung bài viết Tài liệu hướng dẫn phương pháp chọn đại diện giải toán trắc nghiệm Trần Tuấn Anh Tài liệu hướng dẫn phương pháp chọn đại diện giải toán trắc nghiệm Trần Tuấn Anh Tài liệu này bao gồm 36 trang và được biên soạn bởi thầy giáo Trần Tuấn Anh. Nó hướng dẫn cách chọn đại diện để giải các bài toán trắc nghiệm trong chương trình Toán lớp 12, nhằm giúp học sinh ôn thi THPT Quốc gia môn Toán. Các bài toán được chọn lọc cẩn thận từ các nguồn đáng tin cậy để đảm bảo tính chất học thuật và giúp học sinh nắm vững kiến thức cần thiết.