Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kì 2 (HK2) lớp 12 môn Toán THPT năm học 2017 2018 sở GD và ĐT Lạng Sơn

Nội dung Đề kiểm tra học kì 2 (HK2) lớp 12 môn Toán THPT năm học 2017 2018 sở GD và ĐT Lạng Sơn Bản PDF Đề kiểm tra HK2 Toán lớp 12 THPT năm học 2017 – 2018 sở GD và ĐT Lạng Sơn mã đề 132 gồm 6 trang với 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong vòng 90 phút, đề thi có đáp án . Trích dẫn đề kiểm tra HK2 Toán lớp 12 sở Lạng Sơn 2017 – 2018 : + Một người lái xe ô tô đang chạy với vận tốc 20 m/s thì người lái xe phát hiện có hàng rào ngăn đường ở phía trước cách 45 m(tính từ vị trí đầu xe đến hàng rào) vì vậy, người lái xe đạp phanh. Từ thời điểm đó xe chuyển động chậm dần đều với vận tốc v(t) = -5 + 20t (m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, xe ô tô còn cách hàng rào ngăn cách bao nhiêu mét (tính từ vị trí đầu xe đến hàng rào)? [ads] + 1.Trong mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện z^2 + (z‾)^2 = 0 là? A. Trục hoành và trục tung. B. Đường phân giác của góc phần tư thứ nhất và thứ ba. C. Trục hoành. D. Các đường phân giác của góc tạo bởi hai trục tọa độ. + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(9;-3;5); B(a;b;c). Gọi M, N, P lần lượt là giao điểm của đường thẳng AB với các mặt phẳng tọa độ Oxy, Oxz và Oyz. Biết M, N, P nằm trên đoạn AB sao cho AM = MN = NP = PB. Tính tổng T = a + b + c.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trưng Vương TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trưng Vương TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Trưng Vương, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Trưng Vương – TP HCM : + Trong không gian Oxyz, cho hai điểm A M và đường thẳng. Gọi u a b là một vectơ chỉ phương của trình đường thẳng đi qua M vuông góc với đường thẳng d sao cho khoảng cách từ A đến đường thẳng là nhỏ nhất. Tính 2 2 a b. + Trên mặt phẳng toạ độ Oxy, gọi A B C lần lượt là điểm biểu diễn các số phức z iz và z iz. Biết tam giác ABC có diện tích bằng 8. Tính môđun của số phức z. + Trong không gian Oxyz, mặt cầu S có tâm nằm trên mặt phẳng và tiếp xúc với mặt phẳng Oxy tại điểm H(-1;1;0). Tính bán kính R của mặt cầu.
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Trường Chinh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3 , biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x thì được thiết diện là một hình thoi có độ dài hai đường chéo là 6x và 2 3 2 x. + Cho (H) là hình phẳng giới hạn bởi đường cong y x và nửa đường tròn có phương trình (phần tô đậm trong hình vẽ). Diện tích của (H) bằng? + Trong không gian Oxyz, cho ba điểm. Tìm m n để A B C thẳng hàng.
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Võ Văn Kiệt TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Võ Văn Kiệt TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Võ Văn Kiệt, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Võ Văn Kiệt – TP HCM : + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;2),  B(3;1;-2) và mặt phẳng (P) có phương trình x y z 1 0. Hãy tìm điểm M a b c thuộc mặt phẳng (P) sao cho 3 2 MA MB đạt giá trị nhỏ nhất. + Điểm biểu diễn số phức: Cho A, B, C, D lần lượt là các điểm biểu diễn của các số phức 1 2 3 4 z 2 z 3 i z 2 2i z 1 i. Chọn kết luận đúng nhất: A. ABCD là chữ nhật B. ABCD là hình vuông. C. ABCD là hình bình hành D. ABCD là hình thoi. + Số nghiệm của phương trình 2 z z 2 0 trên tập số phức là?