Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện Toán 7 năm 2022 - 2023 phòng GDĐT Lương Tài - Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Lương Tài, tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Trích dẫn đề HSG cấp huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Lương Tài – Bắc Ninh : + Nhà trường thành lập 3 nhóm học sinh khối 7 tham gia chăm sóc di tích lịch sử. Trong đó 2/3 số học sinh của nhóm I bằng 8/11 số học sinh của nhóm II và bằng 4/5 số học sinh nhóm III. Biết rằng số học sinh của nhóm I ít hơn tổng số học sinh của nhóm II và nhóm III là 18 học sinh. Tính số học sinh của mỗi nhóm. + Biết a + 1 và 2a + 1 đồng thời là các số chính phương. Chứng minh rằng a chia hết cho 12. Tìm các số tự nhiên a; b thỏa mãn (20a + 7b + 3).(20a + 20a + b) = 803. + Cho tam giác ABC vuông cân tại A. Vẽ các tia Bx, Cy vuông góc với BC nằm trên nửa mặt phẳng bờ BC chứa điểm A. Gọi D là một điểm nằm giữa B và C. Đường thẳng vuông góc với AD tại A cắt Bx và Cy theo thứ tự tại E và F. 1) Chứng minh AEB = ADC; 2) Chứng minh tam giác EDF vuông cân; 3) Xác định vị trí điểm D trên BC để EF có độ dài nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG huyện Toán 7 năm 2020 - 2021 phòng GDĐT Hà Trung - Thanh Hóa
Thứ Sáu ngày 09 tháng 04 năm 2021, phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa tổ chức kỳ thi giao lưu học sinh giỏi các môn văn hóa lớp 7 cấp huyện năm học 2020 – 2021. Đề thi HSG huyện Toán 7 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG huyện Toán 7 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa : + Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc A, cắt tia này tại N, cắt tia AB tại E và cắt tia AC tại F. Chứng minh rằng: a) AE = AF. b) BE = CF. c) 2 AB AC AE. 2) Cho A nằm trong góc xOy nhọn. Tìm điểm B,C lần lượt thuộc Ox, Oy sao cho tam giác ABC có chu vi nhỏ nhất. + Tìm các số x, y, z nguyên dương thỏa mãn: x + y + z = xyz.
Đề thi HSG Toán 7 năm 2020 - 2021 trường THCS Trung Nguyên - Vĩnh Phúc
Thứ Ba ngày 30 tháng 03 năm 2021, trường THCS Trung Nguyên, huyện Yên Lạc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng đội tuyển học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2020 – 2021. Đề thi HSG Toán 7 năm 2020 – 2021 trường THCS Trung Nguyên – Vĩnh Phúc gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG Toán 7 năm 2020 – 2021 trường THCS Trung Nguyên – Vĩnh Phúc : + Cho góc xOy bằng 600. Tia Oz là phân giác của góc xOy. Từ điểm B bất kì trên tia Ox kẻ BH, BK lần lượt vuông góc với Oy, Oz tại H và K. Qua B kẻ đường song song với Oy cắt Oz tại M. Chứng minh rằng BH = MK. + Cho tam giác ABC vuông cân tại A. Điểm M nằm bên trong tam giác sao cho MA = 2cm, MB = 3cm và 0 AMC 135. Tính MC. + Từ 200 số tự nhiên 1; 2; 3;…; 200, ta lấy ra k số bất kì sao cho trong các số vừa lấy luôn tìm được 2 số mà số này là bội của số kia. Tìm giá trị nhỏ nhất của k.
Đề thi HSG Toán 7 năm 2020 - 2021 phòng GDĐT thành phố Bắc Giang
Ngày 12 tháng 03 năm 2021, phòng Giáo dục và Đào tạo thành phố Bắc Giang tổ chức kỳ thi chọn học sinh giỏi văn hóa cấp thành phố môn Toán lớp 7 năm học 2020 – 2021. Đề thi HSG Toán 7 năm 2020 – 2021 phòng GD&ĐT thành phố Bắc Giang gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút.
Đề thi HSG huyện Toán 7 năm 2020 - 2021 phòng GDĐT Lục Ngạn - Bắc Giang
Thứ Năm ngày 18 tháng 03 năm 2021, phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2020 – 2021. Đề thi HSG huyện Toán 7 năm 2020 – 2021 phòng GD&ĐT Lục Ngạn – Bắc Giang (bảng B) gồm 01 trang với 05 bài toán dạng tự luận, thang điểm 20, thời gian làm bài 120 phút.