Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic Toán 8 năm 2018 - 2019 phòng GDĐT TX Thái Hòa - Nghệ An

THCS. giới thiệu đến các em học sinh lớp 8 đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An, nhằm giao lưu và tuyển chọn các em học sinh giỏi Toán 8 đang học tập tại các trường THCS trên địa bàn Thị xã Thái Hòa, tỉnh Nghệ An. Đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài trong 90 phút. Trích dẫn đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An : + Cho tam giác ABC vuông tại A, có trung tuyến AM, đường cao AH. Trên cùng nửa mặt phẳng bờ BC kẻ hai tia Ax và Cy cùng vuông góc với BC. Qua A kẻ đường thẳng vuông góc với AM cắt Bx và Cy lần lượt tại P và Q. Chứng minh: a) AP = BP và AQ = CQ. b) PC đi qua trung điểm I của AH. c) Khi BC cố định, BC = 2a, điểm A chuyển động sao cho BAC = 90°. Tìm vị trí điểm H trên đoạn thẳng BC để diện tích tam giác ABH đạt giá trị lớn nhất, tìm giá trị lớn nhất đó. [ads] + Cho phân thức: P = (n^3 + 2n^2 – 1)/(n^3 + 2n^2 + 2n + 1). a) Hãy tình điều kiện xác định và rút gọn phân thức trên. b) Chứng minh rằng nếu n là một số nguyên thì giá trị phân thức tìm được trong câu a luôn là một phân số tối giản. + Tìm đa thức f(x) biết: f(x) chia cho x – 2 dư 5; f(x) chia cho x – 3 dư 7; f(x) chia cho (x – 2)(x – 3) được thương là x^2 -1 và đa thức dư là đa thức bậc nhất đối với x.

Nguồn: toanmath.com

Đọc Sách

Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Tam Dương Vĩnh Phúc
Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Tam Dương Vĩnh Phúc Bản PDF - Nội dung bài viết Đề giao lưu HSG lớp 8 môn Toán năm 2016-2017 phòng GD ĐT Tam Dương Vĩnh Phúc Đề giao lưu HSG lớp 8 môn Toán năm 2016-2017 phòng GD ĐT Tam Dương Vĩnh Phúc Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 8 đề giao lưu HSG Toán lớp 8 năm 2016-2017 của phòng GD&ĐT Tam Dương - Vĩnh Phúc. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu trong đề giao lưu HSG Toán lớp 8 năm 2016-2017 phòng GD&ĐT Tam Dương - Vĩnh Phúc: - Cho tam giác ABC, đường trung tuyến AM. Qua điểm D thuộc cạnh BC, vẽ đường thẳng song song với AM cắt đường thẳng AB và AC lần lượt tại E và F. Chứng minh rằng DE + DF = 2AM. - Đường thẳng qua A song song với BC cắt EF tại N. Chứng minh rằng N là trung điểm của EF. - Trong một đề thi có 3 bài toán A, B, C. Có 25 học sinh mỗi người đều đã giải được ít nhất một trong 3 bài đó. Hỏi có bao nhiêu thí sinh chỉ giải được bài B? - Cho hai đa thức A = n^6 + 10n^4 + n^3 + 98n - 6n^5 - 26 và B = 1 + n^3 - n. Chứng minh với mọi số nguyên n, thương của phép chia A cho B là bội số của 6. Hy vọng đề giao lưu này sẽ giúp các em học sinh lớp 8 củng cố kiến thức và chuẩn bị tốt cho kỳ thi HSG sắp tới. Chúc các em học tốt!
Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Chí Linh Hải Dương
Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Chí Linh Hải Dương Bản PDF - Nội dung bài viết Đề giao lưu HSG Toán lớp 8 năm 2016 - 2017 phòng GD&ĐT Chí Linh - Hải Dương Đề giao lưu HSG Toán lớp 8 năm 2016 - 2017 phòng GD&ĐT Chí Linh - Hải Dương Chào quý thầy cô và các em học sinh lớp 8, hôm nay Sytu xin giới thiệu đến bạn đề giao lưu HSG Toán lớp 8 năm 2016 - 2017 từ phòng GD&ĐT Chí Linh - Hải Dương. Đề thi này bao gồm đề bài, đáp án và lời giải chi tiết cho các em ôn tập. Dưới đây là một số câu hỏi đặc biệt trong đề giao lưu HSG Toán lớp 8 năm 2016 - 2017 phòng GD&ĐT Chí Linh - Hải Dương: Đề bài: Cho hai số chính phương liên tiếp. Chứng minh rằng tổng của hai số đó cộng với tích của chúng là một số chính phương lẻ. Đề bài: Cho tam giác ABC vuông tại A (AB > AC). Kẻ đường cao AH. a) Chứng minh rằng AB2/AC2 = BH/CH. b) Kẻ AD là tia phân giác của góc BAH (D thuộc BH). Chứng minh rằng: DH.DC = BD.HC. c) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh rằng CE // AD. Đề bài: Cho hai số x, y thỏa mãn x + y = 2 và x2 + y2 = 10. Tính giá trị của biểu thức: M = x3 + y3. Đề giao lưu HSG Toán lớp 8 năm 2016 - 2017 từ phòng GD&ĐT Chí Linh - Hải Dương chắc chắn sẽ giúp các em ôn tập và nâng cao kiến thức Toán của mình. Chúc các em học tốt!
Đề khảo sát HSG lớp 8 môn Toán năm 2015 2016 phòng GD ĐT Ý Yên Nam Định
Nội dung Đề khảo sát HSG lớp 8 môn Toán năm 2015 2016 phòng GD ĐT Ý Yên Nam Định Bản PDF - Nội dung bài viết Đề khảo sát HSG lớp 8 môn Toán năm 2015-2016 Phòng GD ĐT Ý Yên Nam Định Đề khảo sát HSG lớp 8 môn Toán năm 2015-2016 Phòng GD ĐT Ý Yên Nam Định Chào đón quý thầy cô và các em học sinh lớp 8, Sytu xin giới thiệu đến bạn đề khảo sát HSG Toán lớp 8 năm 2015-2016 của phòng GD&ĐT Ý Yên, Nam Định. Đề thi bao gồm đầy đủ đáp án, lời giải và hướng dẫn chấm điểm. Một trong các câu hỏi trong đề khảo sát Toán lớp 8 năm 2015-2016 phòng GD&ĐT Ý Yên, Nam Định là: 1) Cho hình vuông ABCD có cạnh bằng a, biết hai đường chéo cắt nhau tại O. Lấy điểm I thuộc cạnh AB, điểm M thuộc cạnh BC sao cho IOM = 90 độ (I và M không trùng với các đỉnh của hình vuông). Gọi N là giao điểm của AM và CD, K là giao điểm của OM và BN. Hãy thực hiện các yêu cầu sau: - Chứng minh ΔBIO = ΔCMO và tính diện tích tứ giác BIOM theo a. - Chứng minh BKM = BCO. - Chứng minh 1/CD^2 = 1/AM^2 + 1/AN^2. 2) Cho tam giác ABC (AB < AC), trọng tâm G. Qua G vẽ đường thẳng d cắt các cạnh AB, AC thứ tự ở D và E. Tính giá trị biểu thức AB/AC + AD/AE. 3) Tính giá trị của biểu thức P biết x, y thỏa mãn đẳng thức. Hãy thử sức và giải đề khảo sát này để nâng cao kiến thức Toán của mình. Chúc các em thành công!
Đề chọn HSG lớp 8 môn Toán năm 2015 2016 phòng GD ĐT huyện Sơn Dương Tuyên Quang
Nội dung Đề chọn HSG lớp 8 môn Toán năm 2015 2016 phòng GD ĐT huyện Sơn Dương Tuyên Quang Bản PDF - Nội dung bài viết Đề chọn HSG Toán lớp 8 năm 2015-2016 phòng GD&ĐT huyện Sơn Dương - Tuyên Quang Đề chọn HSG Toán lớp 8 năm 2015-2016 phòng GD&ĐT huyện Sơn Dương - Tuyên Quang Chúng tôi xin giới thiệu đến các thầy cô giáo và các em học sinh lớp 8 đề chọn HSG Toán lớp 8 năm 2015-2016 từ phòng GD&ĐT huyện Sơn Dương - Tuyên Quang. Đề thi bao gồm đáp án, lời giải chi tiết và thang điểm. Đề chọn HSG Toán lớp 8 năm 2015-2016 phòng GD&ĐT huyện Sơn Dương - Tuyên Quang mang đến những câu hỏi thú vị và bổ ích như: Cho điểm M di chuyển trên đoạn thẳng AB. Vẽ hình vuông AMCD, BMEF trên cùng một nửa mặt phẳng bờ AB. Hãy chứng minh rằng AE vuông góc BC và các điểm D, H, F thẳng hàng. Chứng minh rằng đường thẳng DF luôn đi qua một điểm cố định khi M di chuyển trên đoạn thẳng AB. Rút gọn biểu thức và tính giá trị của biểu thức P khi a, b, c là ba số đôi một khác nhau. Đề chọn HSG Toán lớp 8 năm 2015-2016 là cơ hội tốt để các em rèn luyện và phát triển khả năng suy luận, tư duy logic. Hy vọng đây sẽ là bộ tài liệu hữu ích và thú vị cho các em học sinh lớp 8.