Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng hợp kiến thức môn Toán phần Đại số

Nội dung Tổng hợp kiến thức môn Toán phần Đại số Bản PDF - Nội dung bài viết Tổng hợp kiến thức môn Toán phần Đại số Tổng hợp kiến thức môn Toán phần Đại số Tài liệu này được biên soạn bởi quý thầy, cô giáo Nhóm Toán Tiểu Học – THCS – THPT Việt Nam, bao gồm 32 trang để tổng hợp kiến thức môn Toán lớp 9 phần Đại số. Đây là tài liệu hữu ích giúp học sinh lớp 9 tra cứu nhanh khi học chương trình Đại số 9 và ôn thi vào lớp 10 môn Toán. 1. CĂN BẬC HAI – CĂN BẬC BA: Tài liệu cung cấp kiến thức về căn bậc hai và căn bậc ba, điều kiện để biểu thức xác định, liên hệ giữa phép khai căn, nhân, chia, cũng như cách đưa thừa số vào trong hoặc ra ngoài căn. 2. HÀM SỐ BẬC NHẤT – BẬC HAI: Nội dung bao gồm về điều kiện để hàm số là hàm số bậc nhất, hàm số đồng biến, nghịch biến, hệ số góc của đường thẳng, cách vẽ đồ thị hàm số bậc nhất và nhiều kiến thức khác liên quan đến hàm số. 3. ĐỒ THỊ HÀM SỐ: Tài liệu này trình bày về tính chất của đồ thị hàm số, điểm thuộc đồ thị, và vị trí tương đối giữa đường thẳng và Parabol trên mặt phẳng. 4. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH HOẶC HỆ PHƯƠNG TRÌNH: Tài liệu này hướng dẫn cách giải bài toán bằng cách lập phương trình hoặc hệ phương trình, với nhiều dạng toán phổ biến. 5. HỆ PHƯƠNG TRÌNH: Bao gồm kiến thức về kiểm tra nghiệm, tìm nghiệm tổng quát, giải hệ phương trình bằng các phương pháp khác nhau và nhiều kiến thức khác về hệ phương trình. 6. HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI I, II: Tài liệu này chứa thông tin về hệ phương trình đối xứng loại I và II. 7. HỆ ĐẲNG CẤP BẬC HAI: Cung cấp kiến thức về hệ đẳng cấp bậc hai và cách giải. 8-11. PHƯƠNG TRÌNH BẬC HAI, BẬC BA, BẬC BỐN: Bao gồm các phương trình bậc hai, bậc ba, bậc bốn và cách giải chúng. Tài liệu này là nguồn thông tin quý báu giúp học sinh làm quen và nắm vững kiến thức về Đại số, từ đó củng cố kỹ năng và chuẩn bị tốt cho kỳ thi môn Toán. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Chuyên đề hệ phương trình bậc nhất hai ẩn
Tài liệu gồm 77 trang, hướng dẫn giải các dạng toán chuyên đề hệ phương trình bậc nhất hai ẩn, giúp học sinh học tốt chương trình Đại số 9 chương 3: Hệ hai phương trình bậc nhất hai ẩn. A. KIẾN THỨC TRỌNG TÂM B. CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI I. PHƯƠNG PHÁP THẾ. + Dạng toán 1: Giải hệ phương trình bằng phương pháp thế. + Dạng toán 2: Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn bằng phương pháp thế. + Dạng toán 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. + Dạng toán 4. Tìm điều kiện của tham số để hệ phương trình có nghiệm thỏa mãn điều kiện cho trước. II. PHƯƠNG PHÁP CỘNG ĐẠI SỐ. + Dạng toán 1: Giải hệ phương trình bằng phương pháp cộng đại số. + Dạng toán 2: Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số. + Dạng toán 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. + Dạng toán 4: Tìm điều kiện của tham số để hệ phương trình có nghiệm thỏa mãn điều kiện cho trước. III. SỬ DỤNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ. C. BÀI TẬP TRẮC NGHIỆM HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN D. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI
Chuyên đề hàm số bậc nhất và các bài toán liên quan
Tài liệu gồm 64 trang, tổng hợp kiến thức cần nhớ, phân dạng và hướng dẫn giải các dạng bài tập chuyên đề hàm số bậc nhất và các bài toán liên quan, giúp học sinh học tốt chương trình Đại số 9 chương 2. 1. NHẮC LẠI VÀ BỔ SUNG CÁC KHÁI NIỆM VỀ HÀM SỐ. + Dạng toán 1. Tìm điều kiện xác định của hàm số. + Dạng toán 2. Tính giá trị hàm số khi cho giá trị của ẩn. + Dạng toán 3. Xác định điểm thuộc (không thuộc) đồ thị hàm số. + Dạng toán 4. Sự đồng biến, nghịch biến của hàm số. 2. HÀM SỐ BẬC NHẤT VÀ ĐỒ THỊ HÀM SỐ BẬC NHẤT. + Dạng toán 1. Hàm số bậc nhất. Sự đồng biến và nghịch biến của hàm số bậc nhất. + Dạng toán 2. Đồ thị hàm số y = ax và hệ số góc của đường thẳng y = ax. + Dạng toán 3. Đồ thị hàm số y = ax + b (a khác 0). + Dạng toán 4. Hệ số góc của đường thẳng. Đường thẳng song song và đường thẳng cắt nhau. 3. TỔNG HỢP MỘT SỐ BÀI TOÁN LIÊN QUAN ĐẾN HÀM SỐ BẬC NHẤT TRONG CÁC ĐỀ TUYỂN SINH VÀO 10 MÔN TOÁN. 4. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.
Bài giảng căn bậc hai, căn bậc ba - Nguyễn Tài Chung
Tài liệu gồm 37 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung, gồm tóm tắt lý thuyết và bài tập chọn lọc chuyên đề căn bậc hai, căn bậc ba, giúp học sinh học tốt chương trình Toán 9. 1 Căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 2 Căn bậc hai và đẳng thức √A2 = |A|. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 3 Liên hệ giữa phép nhân và phép khai phương. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 4 Liên hệ giữa phép chia và phép khai phương. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. [ads] 5 Bảng căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. 6 Biến đổi đơn giản biểu thức chứa căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 7 Rút gọn biểu thức chứa căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 8 Căn bậc ba. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. Ôn tập chương I. A Đề bài. B Lời giải.
Chuyên đề căn bậc hai và căn bậc ba - Bùi Đức Phương
Tài liệu gồm 40 trang, được biên soạn bởi thầy giáo Bùi Đức Phương, tổng hợp kiến thức và hướng dẫn phương pháp giải một số dạng toán quan trọng thuộc các chủ đề: căn bậc hai và căn bậc ba, trong chương trình môn Toán lớp 9. Bài 1 . Căn bậc hai. Dạng 1 . Tìm căn bậc hai của một số. Phương pháp giải: bám sát vào định nghĩa và tính chất của căn bậc hai. Dạng 2 . So sánh biểu thức không sử dụng máy tính. Phương pháp giải: sử dụng các tính chất của căn bậc hai. Dạng 3 . Biểu diễn hình học căn thức sử dụng thước kẻ và compa. Phương pháp giải: sử dụng các tính chất về dựng hình, đặc biệt là dựng hình vuông, tam giác vuông cho biết độ dài. Bài 2 . Căn thức bậc hai. Dạng 4 . Tìm điều kiện xác định của căn bậc hai. Phương pháp giải: + Một biểu thức a = √f(x) xác định (hay có nghĩa) khi và chỉ khi f(x) ≥ 0. + Một biểu thức b = 1/√f(x) xác định (hay có nghĩa) khi và chỉ khi f(x) > 0. Dạng 5 . Rút gọn các căn thức đơn giản. Phương pháp giải: sử dụng các tính chất của căn bậc hai. [ads] Bài 3 . Liên hệ giữa phép nhân, phép chia & phép khai phương. Dạng 6 . Áp dụng phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Phương pháp giải: sử dụng các tính chất phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Bài 4 . Biến đổi biểu thức chứa căn thức bậc hai. Dạng 7 . Các dạng bài tập biến đổi cơ bản biểu thức chứa căn thức bậc hai. Phương pháp giải: sử dụng các tính chất phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Dạng 8 . Biến đổi biểu thức chứa căn bậc hai. Phương pháp giải: sử dụng các tính chất phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Bài 5 . Căn bậc ba. Dạng 9 . Các dạng bài tập liên quan căn bậc ba. Phương pháp giải: áp dụng định nghĩa và các tính chất của căn bậc ba. Ôn tập chương I