Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Mở đầu hình học giải tích không gian Oxyz

Ebook Mở đầu hình học giải tích không gian Oxyz gồm 411 trang, được biên soạn bởi thầy giáo Huỳnh Kim Linh và nhóm tác giả Chinh phục Olympic Toán, mang tới cho bạn đọc cái nhìn khái quát và cơ bản nhất về chủ đề hình học Giải tích không gian Oxyz, thông qua các lý thuyết cơ bản và ví dụ minh họa kèm lời giải chi tiết. Tài liệu giúp các em học sinh lớp 12 học tốt chương trình Hình học 12 chương 3: phương pháp tọa độ trong không gian và ôn thi tốt nghiệp THPT môn Toán. Chương 1 . Mở đầu hình học tọa độ không gian. + Dạng 1. Tìm tọa độ của vectơ, của điểm. + Dạng 2. Tích vô hướng của hai vectơ và ứng dụng. + Dạng 3. Vận dụng công thức trung điểm và trọng tâm. + Dạng 4. Chứng minh hai vectơ cùng phương, không cùng phương. + Dạng 5. Tích có hướng của hai vectơ và ứng dụng. Chương 2 . Lý thuyết về phương trình đường thẳng. + Dạng 1. Viết phương trình đường thẳng đi qua hai điểm phân biệt. + Dạng 2. Đường thẳng Δ đi qua điểm M và song song với đường thẳng d. + Dạng 3. Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với mặt phẳng (α). + Dạng 4. Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với hai đường thẳng d1, d2 không cùng phương. + Dạng 5. Viết phương trình đường thẳng Δ  đi qua điểm M vuông góc với đường thẳng d và song song với mặt phẳng (α). + Dạng 6. Viết phương trình đường thẳng Δ đi qua điểm A và song song với hai mặt phẳng cắt nhau (α), (β). + Dạng 7. Viết phương trình đường thẳng Δ là giao tuyến của hai mặt phẳng (α) và (β). + Dạng 8. Viết phương trình đường thẳng Δ đi qua điểm A và cắt hai đường thẳng d1, d2 không chứa A. + Dạng 9. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (α) và cắt hai đường thẳng d1, d2. + Dạng 10. Viết phương trình đường thẳng Δ đi qua điểm A, vuông góc và cắt d. + Dạng 11. Viết phương trình đường thẳng Δ đi qua điểm A, vuông góc với d1 và cắt d2, với A không thuộc d2. + Dạng 12. Viết phương trình đường thẳng Δ đi qua điểm A, cắt đường thẳng d và song song với mặt phẳng (α). + Dạng 13. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (α) cắt và vuông góc đường thẳng d. + Dạng 14. Viết phương trình đường thẳng Δ đi qua giao điểm A của đường thẳng d và mặt phẳng (α), nằm trong (α) và vuông góc đường thẳng d (d không vuông góc với (α)). + Dạng 15. Viết phương trình đường thẳng Δ là đường vuông góc chung của hai đường thẳng chéo nhau d1, d2. + Dạng 16. Viết phương trình đường thẳng Δ song song với đường thẳng d và cắt cả hai đường thẳng d1, d2. + Dạng 17. Viết phương trình đường thẳng Δ vuông góc với mặt phẳng (α) và cắt cả hai đường thẳng d1, d2. + Dạng 18. Viết phương trình Δ là hình chiếu vuông góc của d lên mặt phẳng (α). + Dạng 19. Viết phương trình Δ là hình chiếu song song của d lên mặt phẳng (α) theo phương d’. [ads] Chương 3 . Các bài toán về phương trình mặt phẳng. + Dạng 1. Viết phương trình mặt phẳng khi biết một điểm và vectơ pháp tuyến của nó. + Dạng 2. Viết phương trình mặt phẳng đi qua một điểm và song song với một mặt phẳng. + Dạng 3. Viết phương trình mặt phẳng đi qua ba điểm không thẳng hàng. + Dạng 4. Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng d. + Dạng 5. Viết phương trình mặt phẳng (α) chứa đường thẳng Δ, vuông góc với mặt phẳng (β). + Dạng 6. Viết phương trình mặt phẳng (α) qua hai điểm A, B và vuông góc với mặt phẳng (β). + Dạng 7. Viết phương trình mặt phẳng (α) chứa đường thẳng Δ và song song với Δ’ (Δ và Δ’ chéo nhau). + Dạng 8. Viết phương trình mặt phẳng (α) chứa đường thẳng Δ và điểm M. + Dạng 9. Viết phương trình mặt phẳng chứa hai đường thẳng cắt nhau. + Dạng 10. Viết phương trình mặt phẳng chứa hai đường thẳng song song. + Dạng 11. Viết phương trình mặt phẳng đi qua một điểm và song song với hai đường thẳng chéo nhau. + Dạng 12. Viết phương trình mặt phẳng đi qua một điểm và vuông góc với hai mặt phẳng cho trước. + Dạng 13. Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách (β) một khoảng k. + Dạng 14. Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách điểm M một khoảng k. + Dạng 15. Viết phương trình mặt phẳng tiếp xúc với mặt cầu. Chương 4 . Các bài toán về phương trình mặt cầu. + Dạng 1. Tìm tâm và bán kính mặt cầu. + Dạng 2. Viết phương trình mặt cầu. + Dạng 3. Sự tương giao và tiếp xúc. Chương 5 . Các bài toán cực trị trong hình học không gian Oxyz. + Dạng 1. Cho hai điểm A, B, mặt phẳng (P) và đường thẳng d. Tìm tọa độ điểm M thuộc (P) sao cho chu vi tam giác MAB nhỏ nhất. Tìm tọa độ điểm M thuộc d sao cho chu vi tam giác MAB nhỏ nhất. + Dạng 2. Cho hai điểm A, B và đường thẳng (d). Tìm trên (d) điểm M để: MA^2 + MB^2 đạt giá trị nhỏ nhất; |MA + MB| đạt giá trị nhỏ nhất; tam giác MAB có diện tích nhỏ nhất. + Dạng 3. Cho điểm A và đường thẳng (d). Viết phương trình mặt phẳng (Q) chứa (d) có d(A;(Q)) lớn nhất, nhỏ nhất. + Dạng 4. Cho hai đường thẳng d và d’. Viết phương trình mặt phẳng (P) chứa d và tạo với đường thẳng d’ một góc lớn nhất. + Dạng 5. Cho hai điểm A, B và đường thẳng d. Viết phương trình đường thẳng Δ đi qua A, cắt d và cách điểm B một khoảng lớn nhất. + Dạng 6. Cho hai điểm A, B và đường thẳng d. Viết phương trình đường thẳng Δ đi qua A, cắt d và cách điểm B một khoảng nhỏ nhất. + Dạng 7. Tìm M sao cho P = a1MA1^2 + . . . + anMAn^2 nhỏ nhất / lớn nhất. + Dạng 8. Cho mặt cầu (S) và mặt phẳng (α). Tìm điểm M trên mặt cầu sao cho khoảng cách từ nó đến mặt cầu đạt giá trị lớn nhất hoặc giá trị nhỏ nhất. + Dạng 9. Cho mặt cầu (S) và đường thẳng (d). Tìm điểm M trên mặt cầu (S) sao cho khoảng cách từ nó đến đường thẳng d đạt giá trị lớn nhất hoặc đạt giá trị nhỏ nhất? Chương 6 . Phương pháp tọa độ hóa hình cổ điển.

Nguồn: toanmath.com

Đọc Sách

Bài giảng phương trình mặt phẳng
Tài liệu gồm 29 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề phương trình mặt phẳng, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian Oxyz. Mục tiêu : Kiến thức : + Nắm được cách xác định mặt phẳng, vectơ pháp tuyến của mặt phẳng. + Nắm được công thức tính khoảng cách từ điểm đến mặt phẳng, góc giữa hai mặt phẳng. + Nhận biết được vị trí tương đối giữa đường thẳng với mặt phẳng, giữa mặt phẳng với mặt cầu. Kĩ năng : + Viết được phương trình tổng quát của mặt phẳng. + Xác định được vectơ pháp tuyến trong các trường hợp. + Tính được khoảng cách và góc. + Xác định được vị trí tương đối và vận dụng vào giải bài tập. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định vectơ pháp tuyến và viết phương trình mặt phẳng. – Bài toán 1. Viết phương trình mặt phẳng biết một điểm thuộc mặt phẳng và tìm được một vectơ pháp tuyến. – Bài toán 2. Viết phương trình mặt phẳng biết một điểm thuộc mặt phẳng và tìm được một cặp vectơ chỉ phương. – Bài toán 3. Lập phương trình mặt phẳng liên quan đến khoảng cách. – Bài toán 4. Viết phương trình mặt phẳng liên quan đến mặt cầu. – Bài toán 5. Phương trình mặt phẳng đoạn chắn. Dạng 2 : Vị trí tương đối giữa hai mặt phẳng, giữa mặt cầu và mặt phẳng. – Bài toán 1. Vị trí tương đối giữa hai mặt phẳng. – Bài toán 2. Vị trí tương đối giữa mặt cầu và mặt phẳng. Dạng 3 : Khoảng cách từ một điểm đến mặt phẳng. Dạng 4 : Góc giữa hai mặt phẳng. Dạng 5 : Một số bài toán cực trị.
Bài giảng hệ tọa độ trong không gian
Tài liệu gồm 17 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề hệ tọa độ trong không gian, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian Oxyz. Mục tiêu : Kiến thức : + Nắm vững định nghĩa hệ trục tọa độ Oxyz trong không gian, các khái niệm về tọa độ điểm, tọa độ vectơ. + Nắm vững biểu thức tọa độ các phép toán vectơ và các tính chất. + Nắm vững biểu thức tọa độ của tích vô hướng, tích có hướng của hai vectơ và các ứng dụng. + Nắm vững được phương trình mặt cầu, điều kiện để một phương trình là phương trình mặt cầu. Kĩ năng : + Biết tìm tọa độ của một điểm, một vectơ. Tính được tổng, hiệu các vectơ, tích của vectơ với một số. + Tính được tích vô hướng của hai vectơ và các ứng dụng: tính độ dài vectơ, tính khoảng cách giữa hai điểm, tính góc giữa hai vectơ. + Xác định được tích có hướng của hai vectơ và vận dụng làm được một số bài toán. + Viết phương trình mặt cầu biết tâm và bán kính. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm tọa độ điểm, vectơ trong hệ trục Oxyz. Sử dụng các định nghĩa và khái niệm có liên quan đến điểm, vectơ: Tọa độ của điểm, vectơ; độ dài vectơ … và các phép toán vectơ … để tính tổng, hiệu các vectơ; tìm tọa độ trọng tâm tam giác. Dạng 2 : Tích có hướng và ứng dụng. – Bài toán 1. Tìm vectơ tích có hướng. + Để tính tích có hướng của hai vectơ, ta áp dụng công thức. – Bài toán 2. Ứng dụng của tích có hướng để chứng minh tính đồng phẳng. + Ba vectơ a b c đồng phẳng. + Bốn điểm A, B, C, D tạo thành tứ diện. – Bài toán 3. Ứng dụng của tích có hướng để tính diện tích và thể tích. + Diện tích hình bình hành. + Tính diện tích tam giác. + Tính thể tích hình hộp. + Tính thể tích tứ diện. Dạng 3 : Phương trình mặt cầu. Mặt cầu tâm I(a;b;c) và bán kính R có phương trình: (x – a)2 + (y – b)2 + (z – c)2 = R2.
Bài toán tương giao trong không gian Oxyz
Tài liệu gồm 18 trang, được biên soạn bởi thầy giáo Lê Thảo (THPT Nguyễn Thị Minh Khai, thành phố Hà Nội) và thầy giáo Bùi Sỹ Khanh (THPT Trần Cao Vân, thành phố Hồ Chí Minh), hướng dẫn phương pháp giải bài toán tương giao trong không gian Oxyz – một dạng toán vận dụng – vận dụng cao (VD – VDC) thường xuất hiện trong các đề thi thử tốt nghiệp THPT môn Toán. I. NHẮC LẠI LÝ THUYẾT 1. Tương giao giữa mặt cầu và mặt phẳng. Trong không gian Oxyz, cho mặt phẳng P By C D Ax z 0 và mặt cầu 2 2 2 2 S x a y b z c R có tâm I a b c và bán kính R khi đó: – Nếu d I P R thì mặt cầu S và P không có điểm chung. – Nếu d I P R thì mặt cầu S và P có điểm chung duy nhất là H (mặt phẳng tiếp xúc với mặt cầu tại H) và IH P. – Nếu d I P R thì mặt cầu S và cắt mặt phẳng P theo giao tuyến là đường tròn tâm H bán kính r ta có: + Gọi H là hình chiếu vuông góc của I lên P và 2 2 2 I P r IH R d IH. + Cho điểm M nằm trong mặt cầu S mặt phẳng P đi qua M cắt S theo giao tuyến là đường tròn có bán kính r nhỏ nhất IM P. + Cho điểm M nằm trong mặt cầu S mặt phẳng P đi qua M cắt S theo giao tuyến là đường tròn có bán kính r lớn nhất P đi qua 2 điểm I và M. 2. Tương giao giữa mặt cầu và đường thẳng. Trong không gian Oxyz, đường thẳng và mặt cầu S có tâm I và bán kính R khi đó: – Nếu d I R thì mặt cầu S và không có điểm chung. – Nếu d I R thì mặt cầu S và có điểm chung duy nhất là H khi đó IH. – Nếu d I R thì mặt cầu S và cắt đường thẳng tại hai điểm A B ta có một số kết quả sau: + Gọi H là trung điểm AB IH và 2 2 2 4 I I AB d R d IH. + Cho điểm M khi đó đường thẳng đi qua M cắt S tại hai điểm A B sao cho độ dài AB lớn nhất là đường thẳng đi qua 2 điểm M và I. + Cho điểm M nằm trong mặt cầu S đường thẳng đi qua M cắt S tại hai điểm A B sao cho độ dài AB nhỏ nhất là đường thẳng đi qua M và vuông góc IM. II. MỘT SỐ VÍ DỤ MINH HỌA III. BÀI TẬP RÈN LUYỆN
Chuyên đề hình học tọa độ trong không gian Oxyz
Tài liệu gồm 405 trang, được biên soạn bởi nhóm tác giả Tư Duy Toán Học 4.0, tổng hợp lý thuyết, phân dạng toán và bài tập trắc nghiệm chuyên đề hình học tọa độ trong không gian Oxyz, có đáp án và lời giải chi tiết, giúp học sinh tham khảo khi học chương trình Hình học 12 chương 3 (phương pháp tọa độ không gian) và ôn thi tốt nghiệp THPT môn Toán. Kho bài tập được nhóm tác giả sưu tầm và biên soạn khá phong phú và đa dạng, với những dạng toán hay và khó, đòi hỏi học sinh phải vận động khả năng tư duy của bản thân để xử lý những câu 8+, giúp học sinh đạt điểm cao trong kì thi sắp tới. Những câu hỏi trong cuốn sách được nhóm tác giả sưu tầm, tham khảo và phát triển từ các đề thi thử của các Sở, trường Chuyên trên cả nước. CHỦ ĐỀ 1 : HỆ TỌA ĐỘ TRONG KHÔNG GIAN. Dạng 1. Điểm và vectơ trong hệ tọa độ Oxyz. Dạng 2. Tích vô hướng và ứng dụng. Dạng 3. Phương trình mặt cầu. Dạng 4. Cực trị. CHỦ ĐỀ 2 : PHƯƠNG TRÌNH MẶT PHẲNG. Dạng 1. Xác định vectơ pháp tuyến, tính tích có hướng của mặt phẳng. Dạng 2. Viết phương trình mặt phẳng. Dạng 3. Tìm tọa độ điểm liên quan đến mặt phẳng. Dạng 4. Góc và khoảng cách liên quan đến mặt phẳng. Dạng 5. Vị trí tương đối giữa hai mặt phẳng, giữa mặt cầu và mặt phẳng. Dạng 6. Cực trị liên quan đến mặt phẳng. CHỦ ĐỀ 3 : PHƯƠNG TRÌNH ĐƯỜNG THẲNG. Dạng 1. Xác định vectơ chỉ phương của đường thẳng. Dạng 2. Viết phương trình đường thẳng. Dạng 3. Tìm tọa độ điểm liên quan đến đường thẳng. Dạng 4. Góc và khoảng cách liên quan đến đường thẳng. Dạng 5. Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng. Dạng 6. Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu. Dạng 7. Cực trị liên quan đến đường thẳng. CHỦ ĐỀ 4 : ỨNG DỤNG CỦA PHƯƠNG PHÁP TỌA ĐỘ. Dạng 1. Tọa độ hóa Hình học không gian. Dạng 2. Bài toán đại số. CHỦ ĐỀ 5 : TỔNG HỢP VỀ HÌNH TỌA ĐỘ OXYZ. Đề bài. Đáp án.