Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội

Nội dung Đề tuyển sinh môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh Đề tuyển sinh chính thức cho kỳ thi vào lớp 10 môn Toán (chung) năm 2023 của trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội. Đề thi bao gồm đáp án và lời giải chi tiết, được thực hiện bởi CLB Toán A1 gồm Nguyễn Nhất Huy, Trần Nguyễn Đức Nhật, Phan Anh Quân và Trịnh Huy Vũ. Một số câu hỏi trích dẫn từ Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội: Chứng minh rằng nếu 3n3 - 1011 chia hết cho 1008, thì n - 1 cũng chia hết cho 48. Chứng minh rằng trong hai đường tròn cắt nhau tại A và B, và một điểm P trên đường tròn thứ nhất, tam giác OBP và O'B'C đồng dạng. Chứng minh rằng tổng của các góc QBC và ABP bằng 90 độ khi hai đường thẳng OP và O'C giao nhau tại điểm Q. Chứng minh rằng trung điểm của đoạn thẳng DQ luôn nằm trên một đường tròn cố định khi điểm P thay đổi. Chứng minh rằng tập hợp A gồm 30 số tự nhiên thỏa mãn điều kiện đặc biệt được mô tả có tối đa 10 phần tử. Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội sẽ là cơ hội tuyệt vời để các em học sinh thử thách bản thân và chuẩn bị cho hành trình học tập mới. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Tây Ninh; kỳ thi được diễn ra vào thứ Tư ngày 08 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Tây Ninh : + Cho tam giác điều ABC cạnh a, đường cao AH (H thuộc BC), M là điểm bất kỳ trên cạnh BC, vẽ ME vuông góc AB tại E và MF vuông góc AC tại F. Gọi O là trung điểm của AM. a) Tứ giác OEHF là hình gì? b) Tìm giá trị nhỏ nhất của diện tích tứ giác OEHF theo a khi M di động trên cạnh BC. + Cho đường tròn (O) có đường kính BC, A là điểm nằm trên (O) (AB < AC và A khác B). Đường tròn ngoại tiếp tam giác ABO cắt đoạn thẳng AC tại điểm thứ hai là K. Đường thẳng BK cắt (O) tại điểm thứ hai là L. Cát đường thẳng CL, OK cắt nhau tại I. Chứng minh ba điểm A, B, I thẳng hàng? + Cho đường thẳng 28 d y x 3 và parabol 1 2 P y 3 x. Tìm tọa độ giao điểm của (d) và (P).
Đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Yên Bái; kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Yên Bái : + Chứng minh rằng với mọi số tự nhiên n, số B = 9.52n + 13.3n luôn chia hết cho 22. + Tìm tất cả các cặp số nguyên dương (a;b) sao cho ab là ước của a2 + b. + Cho X là tập hợp gồm 26 số nguyên dương đôi một khác nhau, mỗi số không lớn hơn 100. Chứng minh trong X luôn tồn tại hai số x và y sao cho x – y thuộc tập hợp {5;10;15}.
Đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Nguyên (đề thi dành chung cho tất cả các thí sinh). Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Thái Nguyên : + Hai đội công nhân cùng làm chung một công việc thì hoàn thành trong 12 giờ. Nếu làm riêng thì thời gian hoàn thành công việc của đội thứ hai ít hơn đội thứ nhất là 7 giờ. Hỏi khi làm riêng, mỗi đội hoàn thành công việc đó trong bao lâu? + Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 6cm và diện tích tam giác ABC bằng 24cm. Tính độ dài các đoạn thẳng AC, BC, AH. + Cho hình thang ABCD vuông tại A và D. Kẻ BH vuông góc với DC tại H. Biết BH = 12cm, AB = 4cm, DC = 9cm. a) Tính độ dài đoạn thẳng BC; b) Chứng minh đường thẳng AD là tiếp tuyến của đường tròn đường kính BC.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Quốc học Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Toán) năm học 2022 – 2023 trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào ngày 09 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường chuyên Quốc học Huế : + Cho đường tròn (O) và dây BC cố định không đi qua O. Điểm A thay đổi trên cung lớn BC sao cho ABC là tam giác nhọn và AB < AC. Gọi AD, BE, CF là các đường cao và H là trực tâm của tam giác ABC. Gọi K là giao điểm của hai đường thẳng BC và EF; I là giao điểm thứ hai của KA với (O); M là trung điểm BC; N là giao điểm thứ hai của AH và (O). Chứng minh: a) Tứ giác AIFE là tứ giác nội tiếp; b) Ba điểm M, H, I thẳng hàng; c) Tứ giác INMO là tứ giác nội tiếp; d) Đường thẳng N luôn đi qua một điểm cố định khi A thay đổi. + Tìm tất cả các số nguyên x, y thỏa mãn x3 – x2(y + 1) + x(7 + y) – 4 – y = 0. + Cho x, y, z là các số thực dương thỏa mãn xy + yz + zx = 3. Chứng minh?