Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội

Nội dung Đề tuyển sinh môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh Đề tuyển sinh chính thức cho kỳ thi vào lớp 10 môn Toán (chung) năm 2023 của trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội. Đề thi bao gồm đáp án và lời giải chi tiết, được thực hiện bởi CLB Toán A1 gồm Nguyễn Nhất Huy, Trần Nguyễn Đức Nhật, Phan Anh Quân và Trịnh Huy Vũ. Một số câu hỏi trích dẫn từ Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội: Chứng minh rằng nếu 3n3 - 1011 chia hết cho 1008, thì n - 1 cũng chia hết cho 48. Chứng minh rằng trong hai đường tròn cắt nhau tại A và B, và một điểm P trên đường tròn thứ nhất, tam giác OBP và O'B'C đồng dạng. Chứng minh rằng tổng của các góc QBC và ABP bằng 90 độ khi hai đường thẳng OP và O'C giao nhau tại điểm Q. Chứng minh rằng trung điểm của đoạn thẳng DQ luôn nằm trên một đường tròn cố định khi điểm P thay đổi. Chứng minh rằng tập hợp A gồm 30 số tự nhiên thỏa mãn điều kiện đặc biệt được mô tả có tối đa 10 phần tử. Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội sẽ là cơ hội tuyệt vời để các em học sinh thử thách bản thân và chuẩn bị cho hành trình học tập mới. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề minh họa Toán tuyển sinh năm 2019 2020 sở GD ĐT Khánh Hòa
Nội dung Đề minh họa Toán tuyển sinh năm 2019 2020 sở GD ĐT Khánh Hòa Bản PDF - Nội dung bài viết Đề minh họa Toán tuyển sinh năm 2019 - 2020 sở GD ĐT Khánh Hòa Đề minh họa Toán tuyển sinh năm 2019 - 2020 sở GD ĐT Khánh Hòa Vừa qua, sở Giáo dục và Đào tạo tỉnh Khánh Hòa đã công bố đề minh họa kỳ thi tuyển sinh vào lớp 10 năm học 2019 - 2020 môn Toán. Đề được biên soạn theo cấu trúc tương tự như các năm trước, bao gồm 01 trang với 05 bài toán tự luận, học sinh sẽ làm bài trong thời gian 120 phút. Trích dẫn đề minh họa Toán tuyển sinh lớp 10 năm 2019 - 2020 sở GD&ĐT Khánh Hòa: Trên mặt phẳng tọa độ Oxy, cho điểm A(3;-2) và đường thẳng d có phương trình y = x - m với m là tham số. Tìm m để điểm N thuộc đường thẳng d. Với m tìm được, xác định tọa độ giao điểm của đường thẳng d và parabol (P) có phương trình y = -4x^2. Cho AB và CD là hai đường kính khác nhau của đường tròn (O;R). Đường thẳng vuông góc với AB tại A cắt các đường thẳng BC, BD lần lượt tại E và F. Chứng minh góc BAD = BFA. Chứng minh tứ giác CDEF là tứ giác nội tiếp. Gọi I, J lần lượt là trung điểm của các đoạn thẳng AE, AF và H là trực tâm của tam giác BIJ. Tính độ dài đoạn thẳng AH theo R. Đề minh họa Toán tuyển sinh của sở GD ĐT Khánh Hòa năm 2019 - 2020 đặt ra những bài toán đa dạng về các khái niệm và phương pháp giải, giúp học sinh rèn luyện kỹ năng tư duy logic, sáng tạo và khả năng giải quyết vấn đề. Hãy cùng nhau học tập và chuẩn bị tốt nhất cho kỳ thi sắp tới!
Đề Toán tuyển sinh vào 10 chuyên năm 2019 2020 sở GD ĐT Hưng Yên
Nội dung Đề Toán tuyển sinh vào 10 chuyên năm 2019 2020 sở GD ĐT Hưng Yên Bản PDF - Nội dung bài viết Đề Toán tuyển sinh vào 10 chuyên năm 2019-2020 sở GD&ĐT Hưng Yên Đề Toán tuyển sinh vào 10 chuyên năm 2019-2020 sở GD&ĐT Hưng Yên Để chọn ra các học sinh xuất sắc nhất vào các trường THPT chuyên tại tỉnh Hưng Yên, sở Giáo dục và Đào tạo đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 THPT chuyên cho năm học 2019-2020. Đề Toán tuyển sinh này được sử dụng cho thí sinh đăng ký vào các lớp chuyên Toán và chuyên Tin, bao gồm 1 trang với 5 bài toán tự luận. Thời gian làm bài là 150 phút (không tính thời gian phát đề). Một trong những bài toán của đề là: - Trong mặt phẳng toạ độ Oxy có đường thẳng (d) và parabol y = 2x^2. Biết đường thẳng (d) cắt parabol tại hai điểm B và C. Cần tìm tọa độ điểm A trên trục hoành để khoảng cách |AB - AC| lớn nhất. - Cho hình vuông ABCD tâm O, cạnh a. Xác định các điểm và tính toán để chứng minh MK song song với BD, tính tỉ lệ FO/FC và tìm giá trị nhỏ nhất của diện tích tứ giác CPQD khi M thay đổi trên cạnh AB. Kỳ thi này không chỉ đánh giá năng lực của thí sinh mà còn giúp chuẩn bị cho họ vào học tập tại các trường chuyên hàng đầu của tỉnh Hưng Yên. Đề Toán tuyển sinh vào lớp 10 chuyên năm 2019-2020 sở GD&ĐT Hưng Yên chắc chắn sẽ là thách thức lớn đối với các thí sinh tham gia.
Đề Toán tuyển sinh năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung)
Nội dung Đề Toán tuyển sinh năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung) Đề Toán tuyển sinh năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung) Vào ngày thứ Ba, ngày 28 tháng 05 năm 2019, trường Trung học Phổ thông chuyên Đại học Sư phạm Hà Nội đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán dành cho năm học 2019 - 2020. Mục tiêu của kỳ thi là tuyển chọn những học sinh đạt yêu cầu về kiến thức, để chuẩn bị cho một năm học mới đầy hứng khởi. Đề Toán tuyển sinh lớp 10 năm 2019 của trường chuyên Đại học Sư phạm Hà Nội (đề chung) được sử dụng cho tất cả thí sinh dự thi vào trường. Đề thi bao gồm 1 trang với 5 bài toán, thí sinh phải hoàn thành bài thi trong thời gian 120 phút. Chi tiết đề Toán tuyển sinh lớp 10 năm 2019 của trường chuyên ĐHSP Hà Nội (Đề chung) bao gồm: Trên quãng đường AB có độ dài 20km, bạn An và bạn Bình đi bộ từ 2 hướng khác nhau. Sau 2 giờ, họ gặp nhau tại C và nghỉ 15 phút. Sau đó, họ tiếp tục hành trình với vận tốc khác nhau và An đến B sớm hơn Bình đến A 48 phút. Yêu cầu: Tính vận tốc của An trên đoạn AC. Cho đường tròn (O) ngoại tiếp tam giác ABC. Xác định điểm A’ và C’ trên đường tròn sao cho A1C1 cắt đường tròn (O) tại A’ và C’ (với A1 nằm giữa A’ và C1). Tìm mối quan hệ giữa HC1, A1C và A1C1, chứng minh ba điểm B, B’, O thẳng hàng, và tính A’C’ khi tam giác ABC là tam giác đều. Xác định hệ số của đa thức P(x) và Q(x) để thỏa mãn các điều kiện cần đưa ra. Đề Toán tuyển sinh lớp 10 năm 2019 của trường chuyên ĐHSP Hà Nội (Đề chung) không chỉ đánh giá kiến thức của thí sinh mà còn đặt ra những bài toán thú vị, đòi hỏi sự tư duy logic và khả năng giải quyết vấn đề của học sinh. Hy vọng rằng các thí sinh sẽ có được một kỳ thi tuyển sinh thành công và đạt kết quả tốt nhất.
Đề Toán tuyển sinh năm 2019 trường PTNK TP HCM (Vòng 2)
Nội dung Đề Toán tuyển sinh năm 2019 trường PTNK TP HCM (Vòng 2) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh lớp 10 năm 2019 trường PTNK TP HCM (Vòng 2) Đề Toán tuyển sinh lớp 10 năm 2019 trường PTNK TP HCM (Vòng 2) Sytu xin được giới thiệu đến quý thầy cô giáo và các em học sinh đề Toán tuyển sinh lớp 10 năm 2019 trường PTNK TP HCM (Vòng 2). Đề này dành cho các thí sinh dự thi vào các lớp chuyên Toán. Đề Toán tuyển sinh lớp 10 năm 2019 trường PTNK TP HCM (Vòng 2) gồm 5 bài toán, thời gian làm bài là 150 phút (không tính thời gian giám thị coi thi phát đề). Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 trường PTNK TP HCM (Vòng 2): Trong một buổi gặp gỡ giao lưu giữa các học sinh đến từ n quốc gia, cứ 10 học sinh bất kỳ sẽ có ít nhất 3 học sinh đến từ cùng một quốc gia. a) Gọi k là số các quốc gia có đúng 1 học sinh tham dự buổi gặp gỡ. Chứng minh rằng n < (k + 10)/2. b) Biết rằng số các học sinh tham dự buổi gặp gỡ là 60. Chứng minh rằng có thể tìm được ít nhất là 15 học sinh đến từ cùng một quốc gia. Cho n là số tự nhiên, n > 3. Chứng minh rằng 2^n + 1 không chia hết cho 2^m - 1 với mọi số tự nhiên m sao cho 2 < m ≤ n. Tìm tất cả những số tự nhiên n sao cho 2^n + 1 chia hết cho 9.