Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 1 năm 2023 - 2024 phòng GDĐT Lạng Giang - Bắc Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Lạng Giang, tỉnh Bắc Giang; đề thi hình thức 30% trắc nghiệm + 70% tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2023. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2023 – 2024 phòng GD&ĐT Lạng Giang – Bắc Giang : + Nhân dịp cuối năm, ở các siêu thị đã đưa ra nhiều hình thức khuyến mãi. Ở siêu thị Big C giá áo sơ mi nữ nhãn hiệu Blue được giảm giá như sau: Mua áo thứ I giảm 15% so với giá niêm yết, mua áo thứ II được giảm tiếp 10% so với giá đã giảm của áo thứ I, mua áo thứ III sẽ được giảm thêm 12% so với giá đã giảm của áo thứ II nên áo thứ 3 chỉ còn 269280 đồng. Giá niêm yết của loại áo sơ mi trên trong siêu thị là: A. 400000 đồng B. 410000 đồng C. 420000 đồng D. 450000 đồng. + Năm học 2022-2023, học kì I, trường THCS A có 500 học sinh đạt loại khá và giỏi. Học kì II, số học sinh khá tăng 2%, số học sinh giỏi tăng 4% nên tổng số học sinh khá và giỏi là 513 học sinh. Nhà trường phát thưởng cho học sinh đạt thành tích cho học kì II như sau: Mỗi học sinh giỏi là 15 quyển tập, mỗi học sinh khá là 10 quyển tập. Biết giá mỗi quyển tập bán trên thị trường là 9 500 đồng/quyển. Do mua số lượng lượng lớn công ty cung cấp có chính sách như sau: Nếu hóa đơn trên 40 000 000 đồng thì được giảm giá 5%; nếu hóa đơn trên 50 000 000 đồng thì được giảm giá 8%; nếu hóa đơn trên 60 000 000 đồng thì được giảm giá 10%. Hỏi nhà trường phải trả số tiền mua tập làm phần thưởng là bao nhiêu? + Cho đường tròn (O;R) có đường kính BC. Trên tia đối của tia BC lấy điểm A sao cho BO BA 2. Vẽ tiếp tuyến AD với đường tròn (O) (D là tiếp điểm) và dây cung DE của đường tròn (O) vuông góc với BC. 1. Chứng minh AE là tiếp tuyến của đường tròn (O). 2. Vẽ đường kính DF của đường tròn(O). Gọi P là giao điểm của EC và DF, G là giao điểm của hai đường thẳng BD và AE. Chứng minh BC EF và PO GE PC GB. 3. Vẽ cát tuyến AMN của đường tròn (O) (cát tuyến không đi qua O), các tiếp tuyến tại M và N của đường tròn (O) cắt nhau tại K. Chứng minh ba điểm KDE thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề Toán tuyển sinh vào THPT năm học 2019 2020 sở GD ĐT Hà Nội
Nội dung Đề Toán tuyển sinh vào THPT năm học 2019 2020 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề Toán tuyển sinh vào THPT năm học 2019 - 2020 sở GD ĐT Hà Nội Đề Toán tuyển sinh vào THPT năm học 2019 - 2020 sở GD ĐT Hà Nội Chiều Chủ Nhật ngày 02 tháng 06 năm 2019, Sở Giáo dục và Đào tạo thành phố Hà Nội đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020. Kỳ thi này nhằm mục đích đánh giá năng lực học tập môn Toán của các em học sinh một cách công bằng và chính xác, từ đó giúp các trường THPT trên địa bàn Hà Nội lựa chọn các học sinh phù hợp để chuẩn bị cho năm học mới. Đề Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 sở GD&ĐT Hà Nội đề cập đến 5 bài toán dạng tự luận. Đề thi bao gồm 1 trang, thời gian làm bài là 120 phút, cung cấp đáp án và lời giải chi tiết cho các bài toán. Trong số các bài toán, có một số bài như: Hai đội công nhân cùng làm một công việc, sau 15 ngày làm chung thì hoàn thành. Nếu đội thứ nhất làm riêng 3 ngày rồi dừng lại, đội thứ hai làm tiếp trong 5 ngày thì kết thúc được 25% công việc. Hỏi nếu mỗi đội làm riêng thì cần bao nhiêu ngày mới hoàn thành công việc đó? Cho biểu thức P = a^4 + b^4 - ab, với a, b là các số thực thỏa điều kiện a^2 + b^2 + ab = 3. Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P. Một bồn nước inox dạng hình trụ, chiều cao 1,75m và diện tích đáy 0,32m^2. Hỏi bồn nước này có thể chứa bao nhiêu mét khối nước khi đầy? Qua những bài toán này, các thí sinh sẽ được đánh giá về khả năng tư duy logic, tính toán và giải quyết vấn đề. Kỳ thi Toán tuyển sinh vào THPT năm học 2019 - 2020 sở GD&ĐT Hà Nội là cơ hội để các em thể hiện năng lực và chuẩn bị cho hành trình học tập tương lai.
Đề tuyển sinh THPT năm 2019 môn Toán sở GD ĐT Quảng Ninh
Nội dung Đề tuyển sinh THPT năm 2019 môn Toán sở GD ĐT Quảng Ninh Bản PDF - Nội dung bài viết Đề Tuyển Sinh THPT Năm 2019 Môn Toán Sở GD ĐT Quảng Ninh Đề Tuyển Sinh THPT Năm 2019 Môn Toán Sở GD ĐT Quảng Ninh Vào sáng thứ Bảy, ngày 01 tháng 06 năm 2019, Sở Giáo dục và Đào tạo tỉnh Quảng Ninh đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán nhằm chọn lọc những học sinh có học lực tốt để chuẩn bị cho năm học 2019 – 2020. Đề tuyển sinh lớp 10 THPT năm 2019 môn Toán của Sở GD&ĐT Quảng Ninh bao gồm 5 bài toán dạng tự luận, thời gian làm bài là 120 phút, đề thi có độ khó phù hợp với đối tượng học sinh. Một trong các câu hỏi trong đề tuyển sinh môn Toán 2019 của Sở GD&ĐT Quảng Ninh là: Cho phương trình \( x^2 + 2x + m - 1 = 0 \), với m là tham số. 1. Giải phương trình với m = 1. 2. Tìm giá trị của m sao cho phương trình đã cho có hai nghiệm phân biệt x1 và x2 thỏa mãn \( x_1^3 + x_2^3 - 6x_1x_2 = 4(m – m^2) \). Một bài toán khác đòi hỏi học sinh phải suy luận và giải quyết vấn đề là: Hai người thợ cùng làm một công việc trong 2 ngày thì hoàn thành. Mỗi ngày, người thứ hai làm được công việc gấp ba lần người thứ nhất. Hỏi nếu mỗi người làm một mình, họ sẽ hoàn thành công việc trong bao nhiêu ngày? Câu hỏi cuối cùng đề cập đến vấn đề hình học và logic: Cho đường tròn (O; R) có hai đường kính AB và CD vuông góc với nhau. E là điểm thuộc cung nhỏ BC, tiếp tuyến của đường tròn (O; R) tại E cắt AB tại điểm I. Gọi F là giao điểm của DE và AB, K là điểm thuộc đường thẳng IE sao cho KF vuông góc với AB. Hãy chứng minh các phát biểu sau: a. Tứ giác OKEF nội tiếp. b. Góc OKF bằng góc ODF. c. DE.DF = 2R^2. d. Tính tan MDC khi EIB = 45°. Cả 3 câu hỏi trên đều đòi hỏi học sinh có kiến thức vững chắc và khả năng suy luận logic tốt để giải quyết.
Đề Toán tuyển sinh năm 2019 2020 trường chuyên Lê Quý Đôn BRVT (Vòng 1)
Nội dung Đề Toán tuyển sinh năm 2019 2020 trường chuyên Lê Quý Đôn BRVT (Vòng 1) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm 2019-2020 trường chuyên Lê Quý Đôn BRVT Đề Toán tuyển sinh năm 2019-2020 trường chuyên Lê Quý Đôn BRVT Ngày 30 tháng 05 năm 2019, trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa - Vũng Tàu đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 năm học 2019-2020. Đề Toán tuyển sinh lớp 10 năm 2019-2020 của trường chuyên Lê Quý Đôn - BRVT (Vòng 1) là đề thi chung dành cho tất cả các thí sinh tham dự kỳ thi, bao gồm 5 bài toán tự luận, thời gian làm bài là 120 phút. Trích dẫn một số câu hỏi từ đề Toán tuyển sinh lớp 10 năm 2019-2020 trường chuyên Lê Quý Đôn - BRVT (Vòng 1): + Phân tích hàm số y = -1/2x^2 có đồ thị (P) và đường thẳng (d): y = (m - 1)x - m - 3 (với m là tham số). + Tính diện tích của một thửa ruộng hình chữ nhật có độ dài đường chéo là 40m, chiều dài lớn hơn chiều rộng 8m. + Chứng minh các tính chất của tam giác ABC góc nhọn. + Giải các bài toán tương tác với đường tròn và các đường thẳng trong mặt phẳng. Đề Toán tuyển sinh năm 2019-2020 của trường chuyên Lê Quý Đôn BRVT không chỉ đánh giá kiến thức của thí sinh mà còn đòi hỏi sự tỉ mỉ, logic và khả năng giải quyết vấn đề. Chúc các em thí sinh đạt kết quả cao trong kỳ thi sắp tới!
Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Ninh Thuận
Nội dung Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Ninh Thuận Bản PDF - Nội dung bài viết Đề Toán tuyển sinh THPT Ninh Thuận năm 2019-2020 Đề Toán tuyển sinh THPT Ninh Thuận năm 2019-2020 Ngày thứ Bảy, 01 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Ninh Thuận đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 khối THPT cho năm học 2019 - 2020. Đề Toán gồm 4 bài toán, được làm trong thời gian 120 phút. Trích dẫn một số bài toán trong đề Toán: 1. Cho parabol (P): y = 2x^2 và đường thẳng d: y = 3x + 2. Hãy vẽ đồ thị (P) trên hệ trục tọa độ Oxy và tìm tọa độ giao điểm của (P) và d. 2. Chứng minh rằng phương trình x^2 - 2(m - 1)x + 2m - 4 = 0 luôn có hai nghiệm phân biệt x1, x2. Tìm giá trị nhỏ nhất của biểu thức A = x1^2 + x2^2. 3. Cho tam giác ABC vuông tại C nội tiếp trong đường tròn tâm O, đường kính AB = 2R, góc ABC = 60°. Câu hỏi đặt ra bao gồm chứng minh tứ giác CHOK nội tiếp trong một đường tròn, chứng minh rằng AC.AD = 4R^2, và tính diện tích phần tam giác ABD nằm ngoài hình tròn tâm O. Đề Toán tuyển sinh THPT Ninh Thuận năm 2019-2020 mang đến cho học sinh những bài toán đa dạng, đòi hỏi sự logic, suy luận, và kiến thức toán học chắc chắn. Chúc các em học sinh thành công trong kỳ thi này!