Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 11 năm 2020 - 2021 trường Phùng Khắc Khoan - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề học sinh giỏi Toán 11 năm học 2020 – 2021 trường THPT Phùng Khắc Khoan, huyện Thạch Thất, thành phố Hà Nội; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán 11 năm 2020 – 2021 trường Phùng Khắc Khoan – Hà Nội : + Cho một đa giác lồi (H) có 30 đỉnh A1A2…A30. Gọi X là tập hợp các tam giác có 3 đỉnh là 3 đỉnh của (H). Chọn ngẫu nhiên 2 tam giác trong X. Tính xác suất để chọn được 2 tam giác là các tam giác có 1 cạnh là cạnh của đa giác (H). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, (a) là mặt phẳng thay đổi qua AB và cắt các cạnh SC, SD lần lượt tại M, N (M khác S, C và N khác S, D). Gọi K là giao điểm của hai đường thẳng AN và BM. Chứng minh rằng biểu thức T = AB/MN – BC/SK có giá trị không đổi. + Cho hình lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều cạnh a, các mặt bên đều là hình vuông. Gọi M, N, E lần lượt là trung điểm của các cạnh AB, AA’, A’C’. Tính diện tích thiết diện khi cắt lăng trụ ABC.A’B’C’ bởi mặt phẳng (MNE).

Nguồn: toanmath.com

Đọc Sách

Đề thi Olympic lớp 11 môn Toán năm 2018 – 2019 trường THPT Kim Liên – Hà Nội
Nội dung Đề thi Olympic lớp 11 môn Toán năm 2018 – 2019 trường THPT Kim Liên – Hà Nội Bản PDF Sytu giới thiệu đến thầy, cô và các em học sinh khối 11 nội dung đề thi Olympic Toán lớp 11 năm 2018 – 2019 trường THPT Kim Liên – Hà Nội, đề thi gồm 01 trang với 06 bài toán tự luận, học sinh làm bài trong 150 phút (không tính khoảng thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi Olympic Toán lớp 11 năm 2018 – 2019 trường THPT Kim Liên – Hà Nội : + Danh sách đăng kí dự thi Olympic cấp trường của lớp 11A trường THPT Kim Liên – Hà Nội có 25 học sinh, mỗi em đăng kí dự thi một môn trong số các môn: Toán, Văn, Tin học, Sinh học, Lịch Sử, Vật lí, Hóa học, Anh và Địa Lí. Trong đó có 6 học sinh đăng kí dự thi môn Toán và 5 học sinh đăng kí dự thi môn Anh. Chọn ngẫu nhiên 3 học sinh trong danh sách trên, tính xác suất để trong 3 học sinh đó có cả học sinh đăng kí dự thi môn Toán và học sinh đăng kí dự thi môn Anh. [ads] + Cho hình lập phương ABCD.A’B’C’D’ cạnh bằng 1. Lấy điểm I thuộc cạnh AB, điểm E thuộc cạnh DD’ sao cho AI = D’E = x (0 < x < 1). a) Chứng minh IE vuông góc với A’C. b) Tìm x để góc giữa hai đường thẳng AC’ và DI bằng 60 độ. c) Gọi M, N lần lượt là trung điểm của các cạnh AB, A’D’. Xác định giao điểm K của mặt phẳng (CMN) với đường thẳng B’C’ và tính tỉ số B’K/B’C’. + Cho số thực a ∈ (0;1) và dãy số (un) xác định bởi: u1 = 1, un+1 = (a.un^3 + a – 1)^1/3, n thuộc N*. a) Gọi (vn) là dãy số xác định bởi vn = un^3 + 1. Chứng minh rằng dãy số (vn) là một cấp số nhân lùi vô hạn. b) Tìm tất cả các giá trị của a biết rằng: lim (u1^2 + u2^3 + … + un^3 + n) = 4.
Đề thi HSG lớp 11 môn Toán năm 2018 2019 trường Phùng Khắc Khoan Hà Nội
Nội dung Đề thi HSG lớp 11 môn Toán năm 2018 2019 trường Phùng Khắc Khoan Hà Nội Bản PDF Nhằm tuyển chọn các em học sinh giỏi Toán lớp 11 để tuyên dương, khen thưởng, làm tấm gương cho các học sinh khác, đồng thời bổ sung vào đội tuyển học sinh giỏi Toán lớp 11 cấp trường, vừa qua, trường THPT Phùng Khắc Khoan – Thạch Thất – Hà Nội đã tiến hành tổ chức kỳ thi học sinh giỏi Toán lớp 11, các em học sinh được chọn trong kỳ thi lần này sẽ được tiếp tục bồi dưỡng để tham dự kỳ thi học sinh giỏi Toán lớp 11 cấp thành phố. Đề thi HSG Toán lớp 11 năm 2018 – 2019 trường Phùng Khắc Khoan – Hà Nội được biên soạn theo hình thức tự luận, đề gồm 1 trang với 5 bài toán, thời gian làm bài thi Toán là 150 phút. [ads] Trích dẫn đề thi HSG Toán lớp 11 năm 2018 – 2019 trường Phùng Khắc Khoan – Hà Nội : + An và Bình thi đấu với nhau một trận bóng bàn có tối đa 5 séc, người nào thắng trước 3 séc sẽ giành chiến thắng chung cuộc. Xác suất An thắng mỗi séc là 0,4 (không có hòa). Tính xác suất để An thắng chung cuộc. + Trong mặt phẳng tọa độ Oxy, cho các điểm A(-2;3), A'(1;5) và B(5;-3), B'(7;-2). Phép quay tâm I(x;y) biến A thành A’ và B thành B’, tính x + y. + Cho a, b, c là ba hằng số và (un) là dãy số được xác định bởi công thức: un = a√(n + 1) + b√(n + 2) + c√(n + 3) (với mọi n thuộc N*). Chứng minh rằng limun = 0 (n tiến đến vô cùng) khi và chỉ khi a + b + c = 0.