Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THCS THPT Hồng Đức TP HCM

Nội dung Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THCS THPT Hồng Đức TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kì 1 môn Toán lớp 10 năm học 2022 – 2023 trường THCS&THPT Hồng Đức, thành phố Hồ Chí Minh; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận. Trích dẫn Đề cuối học kì 1 Toán lớp 10 năm 2022 – 2023 trường THCS&THPT Hồng Đức – TP HCM : + Một người bán nước giải khát đang có 25 g bột nho và 100 g đường để pha chế hai loại nước nho A và B. Để pha chế 1l nước nho loại A cần 10 g đường và 1 g bột nho; để pha chế 1l nước nho loại B cần 10 g đường và 4 g bột nho. Mỗi lít nước nho loại A khi bán lãi được 30 nghìn đồng, mỗi lít nước nho loại B khi bán lãi được 40 nghìn đồng. Hỏi người đó nên pha chế bao nhiêu lít nước nho mỗi loại để có lợi nhuận cao nhất? + Bạn Phúc muốn dùng 500000 đồng để mua x gói kẹo và y cái bánh pizza. Biết rằng mỗi gói kẹo có giá là 40000 đồng, mỗi cái bánh pizza có giá là 75000 đồng. Mối liên hệ giữa x và y để Phúc không mua hết số tiền ban đầu là? + Trên nóc một tòa nhà có một cột ăng-ten cao 4m. Từ vị trí qua sát A cao 9m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc 0 50 và 0 35 so với phương ngang. Chiều cao của tòa nhà gần nhất với số nào dưới đây?

Nguồn: sytu.vn

Đọc Sách

Kiểm tra học kỳ 1 Toán 10 năm học 2017 - 2018 trường THPT Phước Vĩnh - Bình Dương
Kiểm tra học kỳ 1 Toán 10 năm học 2017 – 2018 trường THPT Phước Vĩnh – Bình Dương gồm 25 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi : + Tìm mệnh đề sai trong các mệnh đề sau: A. 2 là một số chính phương B. 2 là một số nguyên C. Nếu một tam giác có ba cạnh bằng nhau thì tam giác đó đều D. 4 là một số chính phương + + Cho phương trình 3x^2 + 2(3m – 1)x + 3m^2 – m + 1 = 0 với m là tham số. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn x1^2 + x2^2 = 34/9 [ads] + Cho hàm số y = -2x/3 + 1/2 có đồ thị là (d). Mệnh đề nào sau đây là đúng? A. (d) cắt trục hoành tại B(0; 1/2) B. Điểm A(1/2; 1) thuộc đường thẳng (d) C. Hàm số f đồng biến trên R D. Hàm số f nghịch biến trên R
Đề kiểm tra chất lượng HK1 Toán 10 năm học 2017 - 2018 trường THPT Giao Thủy B - Nam Định
Đề kiểm tra chất lượng HK1 Toán 10 năm học 2017 – 2018 trường THPT Giao Thủy B – Nam Định gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm 60 phút, đề thi có đáp án và lời giải chi tiết . Bạn đọc có thể cập nhật thường xuyên các đề thi HK1 Toán 10 tại đây.
Đề kiểm tra định kỳ lần 1 Toán 10 năm học 2017 - 2018 sở GD và ĐT Bắc Ninh
Đề kiểm tra định kỳ lần 1 Toán 10 năm học 2017 – 2018 sở GD và ĐT Bắc Ninh gồm 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Cho hàm số y = -x^2 + 2x, gọi đồ thị của hàm số là (P). 1. Lập bảng biến thiên và vẽ đồ thị (P) của hàm số đã cho. 2. Tìm tất cả các giá trị của tham số m để đường thẳng d có phương trình y = -2x + m cắt đồ thị (P) tại hai điểm phân biệt. [ads] + Cho hai tập hợp A = {1, 2, 3, 4, 5, 6, 7}, B = {0, 2, 4, 6, 8, 9}. Tìm các tập hợp A ∩ B và A\B. + Cho hình thang ABCD vuông tại A và D, biết AB = AD = 5cm, CD = 10cm. Gọi M và N lần lượt là trung điểm của AD và CD. a. Chứng minh rằng: vtAM + vtBN = vtAN + vtBM b. Tính |vtMA + vtMC + 2vtMN|
Đề kiểm tra chất lượng học kỳ 1 Toán 10 năm 2017- 2018 trường THPT Lê Quý Đôn - Hải Dương
Đề kiểm tra chất lượng học kỳ 1 Toán 10 cơ bản năm học 2017- 2018 trường THPT Lê Quý Đôn – Hải Dương gồm 15 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho đồ thị (C) của hàm số y = x^2 – 2x + m và đường thẳng (d): y = 2x + 1. a) Tìm m để (d) cắt (C) tại hai điểm phân biệt A, B. b) Xác định tọa độ trung điểm I của đoạn thẳng AB. [ads] + Gọi B là trung điểm của đoạn thẳng AC. Đẳng thức nào sau đây là đúng? A. vtAB + vtCB = vt0 B. vtBA = vtBC C. Hai véctơ BA và BC cùng hướng D. vtAB + vtBC = vt0 + Cho các vectơ a = (2; -2), b = (1; 4), c = (5; 0). a) Tính u = 3a – 2b + 2c. b) Hãy phân tích vectơ c theo hai vectơ a và b.