Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán 7 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp thành phố môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 10 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Cho tam giác ABC vuông tại A B C 2 kẻ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD HB. Từ C kẻ đường thẳng vuông góc với đường thẳng AD tại E. a) Tam giác ABD là tam giác gì? Vì sao? b) Chứng minh rằng DE DH HE AC. c) Gọi K là giao điểm của AH và CE, lấy điểm I bất kỳ thuộc đoạn thẳng HE I H I E. Chứng minh rằng 3 2 AC IA IK IC. + Một số nguyên dương được gọi là số may mắn nếu số đó gấp 99 lần tổng tất cả các chữ số của nó. Tìm số may mắn có bốn chữ số. + Cho tam giác ABC vuông tại A, độ dài cạnh huyền bằng 2015. Trong tam giác ABC lấy 2031121 điểm phân biệt bất kỳ. Chứng minh rằng tồn tại ít nhất hai điểm có khoảng cách không lớn hơn 1.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi lớp 7 môn Toán năm 2018 2019 phòng GD ĐT Đông Hưng Thái Bình
Nội dung Đề thi học sinh giỏi lớp 7 môn Toán năm 2018 2019 phòng GD ĐT Đông Hưng Thái Bình Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 7 năm 2018-2019 phòng GD&ĐT Đông Hưng - Thái Bình Đề thi học sinh giỏi Toán lớp 7 năm 2018-2019 phòng GD&ĐT Đông Hưng - Thái Bình Xin chào quý thầy cô và các em học sinh lớp 7! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi học sinh giỏi Toán lớp 7 năm 2018-2019 của phòng GD&ĐT Đông Hưng - Thái Bình. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm để các em tham khảo. Dưới đây là một số câu hỏi trong đề thi: Cho tam giác ABC có góc A tù. Kẽ AD // AB và AD = AB (tia AD nằm giữa hai tia AB và AC). Kẽ AE // AC và AE = AC (tia AE nằm giữa hai tia AB và AC). Gọi M là trung điểm của BC. Chứng minh rằng: AM // DE. Cho tam giác ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D thuộc AC). Từ C kẻ CE vuông góc với AB (E thuộc AB). a. Chứng minh rằng: OD = 1/2BC. b. Trên tia đối của tia DE lấy điểm N, trên tia đối của tia ED lấy điểm M sao cho DN = EM. Chứng minh rằng: Tam giác OMN là tam giác cân. Không dùng máy tính, hãy tính giá trị của biểu thức S. Hy vọng đây sẽ là tài liệu hữu ích để các em ôn tập và chuẩn bị cho kì thi sắp tới. Chúc các em học tốt!
Đề thi Olympic tài năng trẻ lớp 7 môn Toán năm 2018 2019 quận Đống Đa Hà Nội
Nội dung Đề thi Olympic tài năng trẻ lớp 7 môn Toán năm 2018 2019 quận Đống Đa Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic tài năng trẻ lớp 7 môn Toán năm 2018 2019 quận Đống Đa Hà Nội Đề thi Olympic tài năng trẻ lớp 7 môn Toán năm 2018 2019 quận Đống Đa Hà Nội Đề thi Olympic tài năng trẻ Toán lớp 7 năm 2018 – 2019 của cụm trường THCS quận Đống Đa, Hà Nội bao gồm 01 trang với 4 câu tự luận. Đề thi được tổ chức nhằm tạo cơ hội cho các em học sinh giỏi môn Toán lớp 7 tại các trường THCS trên địa bàn quận Đống Đa, Hà Nội cùng giao lưu, tuyển chọn. Mục tiêu của đề thi là tuyên dương, khen thưởng và thúc đẩy nâng cao chất lượng học tập môn Toán lớp 7.
Đề thi Olympic Toán 7 năm 2017 2018 phòng GD ĐT Kinh Môn Hải Dương
Nội dung Đề thi Olympic Toán 7 năm 2017 2018 phòng GD ĐT Kinh Môn Hải Dương Bản PDF - Nội dung bài viết Đề thi Olympic Toán 7 năm 2017-2018 phòng GD&ĐT Kinh Môn-Hải Dương Đề thi Olympic Toán 7 năm 2017-2018 phòng GD&ĐT Kinh Môn-Hải Dương Chào mừng đến với Đề thi Olympic Toán lớp 7 năm 2017-2018 từ phòng GD&ĐT Kinh Môn - Hải Dương. Bộ đề thi này bao gồm đề thi, đáp án chi tiết và lời giải, cung cấp hướng dẫn chấm điểm một cách chi tiết. Dưới đây là một số câu hỏi trích dẫn từ đề thi Olympic Toán lớp 7 năm 2017-2018 phòng GD&ĐT Kinh Môn - Hải Dương: Cho tam giác ABC có góc A nhỏ hơn 90 độ. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ABM và ACN. Hãy chứng minh rằng: MC = BN và BN = CM. Hãy kẻ AH song song với BC. Chứng minh rằng AH đi qua trung điểm của MN. Cho tam giác ABC vuông cân tại B. Điểm M nằm bên trong tam giác sao cho MA: MB: MC = 1: 2: 3. Hãy tính số đo AMB? Cho biết (x - 1).f(x) = (x + 4).f(x + 8) với mọi x. Chứng minh rằng f(x) có ít nhất bốn nghiệm. Đề thi Olympic Toán lớp 7 năm 2017-2018 phòng GD&ĐT Kinh Môn - Hải Dương chắc chắn sẽ đem đến cho các em học sinh những thách thức và cơ hội để rèn luyện kỹ năng toán học của mình. Chúc các em thành công và phát triển trong hành trình học tập của mình!
Tuyển tập 150 đề thi học sinh giỏi lớp 7 môn Toán Hồ Khắc Vũ
Nội dung Tuyển tập 150 đề thi học sinh giỏi lớp 7 môn Toán Hồ Khắc Vũ Bản PDF - Nội dung bài viết Tuyển tập 150 đề thi học sinh giỏi lớp 7 môn Toán Hồ Khắc Vũ Tuyển tập 150 đề thi học sinh giỏi lớp 7 môn Toán Hồ Khắc Vũ Tài liệu "Tuyển tập 150 đề thi học sinh giỏi lớp 7 môn Toán" bao gồm 157 trang với 150 đề thi được lựa chọn từ các trường THCS, cơ sở GD và ĐT trên khắp cả nước. Tài liệu được tổng hợp và biên soạn bởi thầy Hồ Khắc Vũ.